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University of Washington
Abstract
Measuring Signalized Intersection Performances with
Traffic Sensors

Jianyang Zheng

Co-Chairs of the Supervisory Committee:
Associate Professor Yinhai Wang
Professor Nancy Nihan
Department of Civil and Environmental Engineering

In recent years, the Intelligent Transportation Systems (ITS) have gained more
and more attention from researchers and are widely applied in many transportation
fields. Since ITS focuses on processing transportation information and data, data
collection is fundamental and essential for the whole system. Most of the data,
especially traffic data in real-time, are collected with traffic sensors. Compared with
freeways, signalized intersections have much more complicated traffic conditions and
deserve more research on data collection. Intersection traffic analysis parameters, such
as control delay, queue length, and signal cycle failure, are difficult to directly capture
with traffic sensors. In this research, an algorithm is developed to measure these traffic
parameters at signalized intersections with traffic count data collected with traditional
traffic sensors. Control delay and queue length are measured in a zone with traffic

sensors on both ends. A system using video image processing was also developed for



locations with no other traffic sensors but video cameras. Performances of these
systems were demonstrated with both real-world and simulation data. With the method
and system developed by this research, intersection performance can be quantitatively
monitored in real-time and this can benefit many transportation applications. One
application example of the system discussed in this dissertation is to evaluate the

Transit Signal Priority (TSP) system based on traffic sensor inputs.
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Chapter 1 Introduction

Background

In recent years, the rapidly developing technologies, especially the information
technology, have provided many more opportunity and capacity to solve transportation
problems that were difficult to deal with before and to supply better transportation
services. Intelligent Transportation Systems (ITS), which are defined as: “the
application of advanced sensor, computer, electronics, and communication
technologies and management strategies—in an integrated manner—to improve the
safety and efficiency of the surface transportation system,” have gained more and
more attention from researchers and are widely applied in many transportation fields
(National ITS Architecture Team, 2001). Based on the Transportation Equity Act for
the 21 Century (TEA-21), the ITS programs received $1.282 billion financial support
from the United States Department of Transportation (USDOT) from 1998 to 2003

(USDOT, 1998).

ITS can be divided into 16 subsystems: arterial management, freeway
management, transit management, incident management, emergency management,
electronic payment and pricing, traveler information, information management, crash
prevention and safety, roadway operations and maintenance, road weather
management, commercial vehicle operations, intermodal freight, collision avoidance

systems, driver assistance systems, and collision notification systems (USDOT, 2007).
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The trend of research and development in ITS was studied and it was found that about

56% of ITS publications and 32% of patents were related to the traffic management,
which includes traffic surveillance, device control, incidents, travel demand,

emissions, and highway rail intersections (Khattak, 2007).

Since ITS focuses on processing transportation information and data, data
collection is fundamental and essential for the whole system. In a typical ITS
architecture shown in Figure 1-1 (Federal Highway Administration, 2003), all the
advanced transportation applications, such as the traffic management and the traveler
support services, are built up on data collected by the system. Most of the data,

especially traffic data in real-time, are collected with traffic sensors.

Current research on traffic sensors is mostly focused on freeways, rather than
intersections. However, traffic conditions at intersections are much more complicated
than those on freeways. At an intersection, traffic flows are controlled by traffic
signals or signs, moving in multiple directions with many conflicting points, and
traffic flow can also be interrupted by transit vehicles, pedestrians and cyclists.
Furthermore, the total traffic volume through all the signalized intersections in an
urban or suburban area is much higher than that through freeways of the same area. Of
the total vehicle miles traveled (VMT) on national roadways, interstate freeways only
accounted for about 24.4% (or 732 billion VMT), while other arterials, collectors, and

locals carried the remaining 75.6% (about 2,268 billion VMT) in 2004 (Federal
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Highway Administration and Federal Transit Administration 2006). Therefore, it is of

practical significance to measure intersection performance.
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Figure 1-1 ITS Architecture Diagram
Source: Freeway Operation Handbook. FHWA Report No. FHWA-OP-04-003. Federal

Highway Administration, 2003

There are several traffic parameters for performance evaluation at signalized
intersections. Based on the Highway Capacity Manual 2000 (HCM 2000), the three
criteria for this task are: Level of Service (LOS or the control delay per vehicle),

queue length, and cycle failure (or overflow). Control delay is the delay for a vehicle
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approaching and entering a signalized intersection that is contributable to traffic signal

operation. Queue length is the maximum number of vehicles that are queued during a
signal cycle. Cycle failure occurs when a number of queued vehicles are not able to

depart the intersection due to insufficient capacity during a signal cycle.

These traffic parameters, such as control delay, queue length, and signal cycle
failure, are difficult or even impossible to be directly captured by traditional traffic
sensors. However, most of these detectors have the ability to capture traffic count data.
With the traffic count data provided in real-time, it is possible to estimate the traffic
parameters of control delay, queue length, and signal cycle failure using special

algorithms.

Research Objective

In this research, algorithms are designed to measure traffic parameters at
signalized intersections using traffic counts collected by traditional traffic sensors,
such as inductive loops or traffic cameras. A computer system is developed to
implement these algorithms. The traffic parameters measured by this system include
average control delay, queue length, and signal cycle failure. The intersection

performance can be quantitatively measured in real-time by this system.



Originality of This Research

The algorithm for control delay measurement is based on an innovative idea
that captures control delays with two sets of detectors, one for entering detection and
the other for exit detection. This algorithm utilizes currently available traffic sensors
and provides quantitative intersection performance measures in real-time. Therefore it
enables the measurement of arterial performance in real-time. As we know, there are
lots of similar applications developed for freeways, but till now there are not such an
applications known for arterials or intersections. Thus, this research complements the

state of the art in this area and may trigger some follow-on research and applications.

A major contribution of this research is that it successfully developed the
system based on the algorithm for automatically and quantitatively measuring
intersection performance in real-time. All of the functions of the system were tested

with both real world and simulated traffic data.

System Boundary

The research is limited to measure control delay, queue length, and signal
cycle failure at a typical signalized intersection equipped with properly installed traffic
sensors such as Video Image Processors (VIPs). Traffic sensors, which provide input
data for this study, are assumed to be sufficiently accurate and reliable. The VIPs used
in the field test are those installed in the City of Lynnwood, Washington State. Traffic

detection in nighttime or under extreme weather conditions will not be studied in this
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research. The shadows’ impact on video image processing will be dealt with using

existing algorithms from other studies and thus is not studied either in this dissertation.
Also, it is assumed that traffic queue will not extend beyond the camera’s field of view

in this study.
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Chapter 2 State of the Art

Current Research on Traffic Data

To acquire and to apply traffic data in real-time has been a quickly developing
business in North America. Figure 2-1 shows the economics behind ITS and
corresponding data flow (Seymour and Carvell 2005). Inrix, Inc., for example,
partnered with Clear Channel and Tele Atlas to develop a real-time traffic information
system with traffic data mainly from Globe Positioning System (GPS) probes on about

650,000 vehicles (Mistele 2007).

Pay for ITS
v Through
. 8 Taxation
-x.%,é} Indirect Payment
|
Pay forITs
Through
Fees
Direct Payment
ITS Marketplace ITS Production
{Roadside, Vehicle {Center Subsystems)
& Traveler
Subsystems)
Shops Factories
iTS Service

Delivery to Marketplace
{Architecture Flows)

Figure 2-1 ITS Market

Source: Interim Guidelines for Data Access for Texas Traffic Management Centers.
FHWA Report No. FHWA/TX-05/Report 0-5213-P1, Texas Department of
Transportation and United States Department of Transportation, 2005



Traffic volume is the most fundamental data in transportation. Traffic volume
is “the total number of vehicles that pass over a given point or section of a lane or
roadway during a given time interval” (HCM 2000). For the purpose of describing
traffic demand, two parameters are commonly used: Annual Average Daily Traffic
(AADT) and directional design-hour volume (DDHV). Many other traffic parameters
are related to traffic volume. For example, roadway capacity is defined as “the
maximum flow rate that can be accommodated by a given traffic facility under
prevailing conditions” (HCM 2000). The relationship between traffic volume and
traffic safety has been widely studied and several Accident Prediction Models (APMs)
were built up based on these studies (for example, Joksch and Kostyniuk 1997; Davis
1998). Traffic signal controls also rely on volume. For example, special traffic control
strategies cannot be utilized under low traffic-volume conditions (Abdelghany and
Connor 2006). Pavement performance is significantly impacted by traffic load, which
can be determined by traffic volume of each vehicle class (Skerritt 1993; Hajek et al
2005). Traffic calming, which is to mitigate the impact of vehicle volume of a given
roadway section, is of big interests among traffic professionals (Reardon 2001).
Traffic volume is stochastically distributed and dynamically evolves with other

factors. To predict traffic volume, researchers have applied mathematical methods,
such as the Empirical Bayes methods, to model the distribution of traffic volume

(Davis and Yang 2001).
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Along with traffic volume, speed is considered to be one of the most desirable

traftic parameters for multiple ITS applications, such as real-time traffic control and
traveler information systems (Wang and Nihan, 2000). Based on the research by
Evanchik es al (2006), the speed index is a viable performance measure for state
operations because it can be measured with existing traffic sensors, can be easily
understood by most individuals, can be applied to varied classes of roadways, is
suitable from the lane level up to a regional or statewide measurement, and is reliable
without principle assumptions or estimating techniques. Vehicle speed can be directly
measured or estimated with inductive loop, calibrated camera, Remote Traffic
Microwave Sensor (RTMC), etc. (Wang and Nihan, 2003; Schoepflin and Dailey,

2003; Weber, 1999).

Occupancy is the proportion of time a roadway cross section is occupied by
vehicles. Since it is easier to measure, roadway occupancy is often considered as a
surrogate for density of vehicles (HCM, 2000). In research on freeway usage and
performance, occupancy and vehicle volume are the two principle measurements from
traffic sensors, because occupancy can be used to indicate level of congestion and can
also be used to estimate vehicle speeds with vehicle volume and classification data

(Ishimaru and Hallenbeck 1999; Wang and Nihan 2003).

Density is the number of vehicles occupying a given length of a lane or

roadway at a particular instant. It is a critical parameter for freeway or highway
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performance evaluation and is the criterion determining the Level of Service (LOS) of

uninterrupted traffic flows (HCM, 2000). Research on freeway bottlenecks found that
the level of density corresponding to capacity drop was reproducible at various
locations (Chung et al, 2007). High vehicle density is found to increase drivers’
mental work load and significantly change response time and detection accuracy in

both visual and auditory modalities (Baldwin and Coyne, 2003).

Travel time may include the delays from traffic congestion or fixed
interruptions, such as traffic signals. Travel time-based measures are believed to be the
most useful for the needs of a wide range traffic congestion measurement (Lomax ef al,
1995). Travel time can be measured by re-identifying vehicles with multiple
inductance loops (Coifman and Krishnamurthy 2007), license plate matching
(Shuldiner 1996), tracking probe vehicles with cell phone (i.e., Turner 1996; Wunnava

et al 2007), or Automatic Vehicle Location (AVL) system (Schafer et al 2002), etc.

All these above listed traffic parameters can be applied to both un-interrupted
flow and interrupted flow. There are several traffic parameters that are often used for
interrupted flow, which is much more complicated. Control delay is such a parameter
that is defined as the part of delay attributed to signal control. Control delay includes
decelerating delay, stopped delay, and accelerating delay. It has been the principle

measure of service and determines the LOS at intersections (HCM, 2000). HCM 2000

provides a methodology to estimate control delay with input data of traffic
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movements, traffic composition, geometric characteristics, and signal configuration.

Compared with the stopped delay, which is a widely used intersection performance
indicator before the mid 1990’s, the control delay is difficult to measure directly.
Hoeschen er al (2005) proposed to estimate control delay by subtracting mid-block
delay from the segment delay. The mid-block delay occurs at the mid-block and is
independent of signal controls, and the segment delay is the total delay between the
center of the upstream intersection and the center of the downstream one. Probe
vehicles installed with GPS devices (i.e., Hoeschen er a/ 2005; Quiroga and Bullock
1999) or speed measuring devices (Colyar and Rouphail, 2003) were utilized to

measure control delay at intersections using this technology.

Queue forms when the demand exceeds capacity at the beginning of a green
period at a signalized intersection (HCM, 2000). The characters of queuing are
determined by three major factors: arrival rate, service rate, and signal timing plan.
Larson (2001) developed a video image processing system with inputs from
surveillance and detection cameras to estimate queue length at signalized intersections.
Queue length can be estimated by modeling the characteristics of speed ~ density
relationship with parameters updated in real-time (Yi, 2001). Chang and Su (1995)
applied neural network models trained with simulated data to predict queue length and

found that they can achieve 90% accuracy if one-vehicle difference is acceptable error.
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Cycle failure (or overflow) is the situation that occurs when queued vehicles

are not cleared during a given green phase. The number of queued vehicles that fail to
pass through the intersection during a green indication is called cycle failure (HCM,
2000). Zheng et al (2006) developed a system to capture cycle failure with video
image processing by tracking the location of the end-of-queue. A model based on the
principle of flow conservation was developed to estimate the overflow queue (or cycle

failure) and was implemented and tested in a simulation model by Fu er al (2001).

Current Research on Traffic Sensors

Middleton et al (1999) pointed out that the inductive loop is the most common
traffic detector used today. An inductive loop detects vehicles by their ferromagnetic
effect, which would decrease the inductance of the loop when a vehicle is over or near
a loop (Kell er al, 1990). A single loop can measure traffic volume and occupancy.
With the algorithm developed by Wang and Nihan, a single loop can also detect
vehicle speed (2000) as well as vehicle type (2003). Dual loops. or speed traps, can be
used to measure speed directly. The sensitivity difference of the two single loops in
the dual loop, as well as unsuitable sensitivity levels of a single loop, may cause errors
in detection. Loops not working properly can be identified with historical loop data
and the relationships between volume, speed. occupancy. and vehicle length (Al-Deek
and Chandra, 2004). In most practices, the volume and occupancy data provided by a
loop are aggregated every 20 or 30 seconds. Although such interval data are

convenient to transfer and store, the event data of each individual vehicle are lost in
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this process. To capture the event data for individual vehicles, the Advanced Loop

Event Data Analyzer (ALEDA) was developed by Cheevarunothai et a/ (2005). With
the event data, the sensitivity of both single loops can be adjusted to a reasonable level
with the smallest sensitivity discrepancies (Cheevarunothai et al, 2006). Coifman
(1999) proposed to detect errors of the dual loop by simply comparing the occupancies

difference of the same vehicle on the two single loops.

In recent years, Video Image Processors (VIPs) have became most popular
because they have the ability to capture not only traffic volumes, but also speeds, bin
volumes, queue length, control delay, and other traffic parameters. These parameters
can be obtained through detecting and tracking vehicles based on their features
(Beymer er al, 1997) or profiles (Kim and Malik, 2003). Another popular approach to
obtain these parameters is called “image subtraction.” It subtracts background image
from current image to detect objects moving across a constant scene (Shapiro and
Stockman, 2001). The constant scene is referred to as the background, which contains
merely static objects (e.g. road pavement, roadside buildings, etc.) and is clear of
moving vehicles or pedestrians. There are several ways to extract background images
from traffic video streams. Avery ef al (2004) introduced a background image
extraction algorithm based on the changes of pixel colors from frame to frame. Zheng

et al (2006) introduces a method that can quickly extract the background image from
traffic video streams for both freeways and intersections under a variety of prevailing

traffic conditions
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RADAR technology is widely used in traffic engineering to measure vehicle
volume, speed, and length. A RADAR antenna generates and transmits radio wave
into the space. When the radio wave strikes an object, it reflects back to the detector
and the object gets detected. Based upon the radio wave travel time, the distance from
the sensor to the object can be calculated. The speed of the object can be calculated
with the change of reflected radio signal’s frequency based on the Doppler Principle
(National Highway Traffic Safety Administration 1983). With the calculated speed
and the duration of vehicle being detected, the vehicle length and classification can be
measured by a calibrated RADAR sensor (Zwahlen et al 2005). RADAR sensors are
non-intrusive. Compared with intrusive sensors, such as inductive loops, the non-
intrusive sensors are safe for installation, non-disruptive to traffic, and free from
pavement environment (Minnesota Department of Transportation and SRF Consulting
Group, Inc. 2001). RADAR sensors also have the ability to monitor traffic on several
lanes at the same time with only one device. This method can drastically reduce
implementing cost compared with inductive loops. South Dakota Department of
Transportation used the Remote Traffic Microware Sensor (RTMS), which is one kind
of RADAR sensor, to count vehicles. The test showed that for the 45,062 vehicles
passed by, the result from the RTMS was about 3% lower than ground-truth data
(Weber 1999). Field tests also showed that compared with inductive loop, RADAR
sensor is less accurate in speed measurement, and some RADAR sensors can only

provide averaged speed data, rather than the speed of individual vehicle (Zwahlen et al
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2005; Weber 1999). Reflective surface for the radio signal may introduce errors.

Vehicles may be missed due to occlusions introduced by larger vehicles in the path of

RADAR waves (Wald 2004; Coifman 2006).

GPS is a worldwide radio-navigation system with a constellation of operating
satellites and their ground stations and enables the receiver almost anywhere on the
earth to compute position, velocity, and time (Grewal ef al, 2001). Many factors, such
as ionosphere delay, troposphere delay, and multipath propagation of GPS signals. can
cause errors in position calculation by GPS. For example, in forest GPS position error
and data update frequency would significantly deteriorate as forest canopy level
increases (Zheng er al, 2005). With the Differential GPS (DGPS) technology,
accuracy can reach to centimeter level. DGPS can take out most of the GPS bias errors
with a DGPS reference receiver that observes the bias of each satellite and transmits
the corrections based on the differences between observed signals and predicted
signals to any remote GPS receiver within its communication coverage. GPS position
error can also be reduce by integrating GPS with other position systems. For example,
GPS can be integrated with the Inertial Navigation System (INS), which can provide
reliable position data for a relative short period when the GPS signal is blocked, such
as in tunnels (Weiss, 1998). Another example is to integrate GPS with Dead
Reckoning (DR), which uses a magnetic compass and wheel odometers to determine
the vehicle's route and position ((Vlcek, 1993). GPS-enabled transit Automatic

Vehicle Location (AVL) systems can help spot chronic bottlenecks, provide
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navigation information to the transit agency, and provide public bus arrival times,

service and routes. These systems are implemented at multiple locations in the United
States, such as Milwaukee County Transit, Central Ohio’s Transit Authority (COTA)
in Central Ohio, Blacksburg Transit in Virginia, and Bus Dispatching System (BDS)
in Portland (Carter, 2002). GPS can be installed on transit vehicles to provide
positioning data that are critical for calculation of transit travel time and Transit Time
Match (TTM), which is the difference between actual transit arrival time and

scheduled arrival time at each timing point on the transit routes (Zheng et al, 2008).

The traffic sensor technologies are developing very fast and it is difficult to
discuss every kind of sensor in detail in this dissertation. There are several other
sensors, such as pneumatic tubes, transponders, cell phones, infrared detectors,
acoustic detectors, etc., are not introduced here because they are less widely deployed

at the current stage.

Current Research on Intersection Performance Measurement
Performance measures can be generated from archived ITS data. The

California Department of Transportation (Caltrans), for example, developed the

Performance Measurement System (PeMS) that provides a comprehensive assessment

of freeway performance based on loop detector data (Chen ef al, 2001). The TranStar
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in Houston provided vehicle delays, which were calculated based on travel time data

that are collected by an Automatic Vehicle Identification (AVI) system (TTI, 2000).

Several studies have been conducted to collect intersection traffic data using
video image processing. For example, Yin ef al (2004) used virtual loops to measure
traftic parameters. The position and size of each loop can be adjusted by users for
collecting volume, speed, occupancy, and vehicle classification data. A video image
processing system, called SPatial Image processing Traffic flow Sensor (SPITS), was
developed by Higashikubo ez al (1997) to detect traffic queue length. SPITS measures
a queue length in meters, but cannot provide the number of vehicles in a queue. Fathy
and Siyal (1995, 1998) also developed image processing systems to measure volume,
speed, vehicle length, and queue length. The profiles used to detect queue length were
divided into sub-profiles, each with approximately the same length per vehicle,
thereby making it possible to estimate the number of vehicles in the queue. Zheng ef al
(2006) developed a system to detect traffic signal cycle failure using video image
processing by tracking the location of the end of the queue. Gupte er al (2002)
proposed a method to track vehicles by matching regions with vehicles in the video
stream. Vehicle parameters such as location, length, and speed can be extracted from
images captured by a properly calibrated camera. They also proposed to use a
dynamically updated threshold to separate vehicles from the background. In a study
conducted by Saito et al (2001), average stopped vehicle delays were estimated by

image analysis. The total delay was calculated by adding all the stopped vehicle delays
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in a sampling time interval. The average stopped vehicle delay was then estimated by

dividing the total delay by the total volume.

This literature review has not found a comprehensive algorithm to measure the
traffic parameters at signalized intersections using traffic count data collected by

currently available traffic sensors.
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Chapter 3 Methodology

The flow chart of the methodology is shown in Figure 3-1. The first step is to
detect and count vehicles. There are several detection systems that are available for
this task and most of them provide good performance and have been commercialized
for years. In this research, the author did not spend time on repeating their work.
Instead, this study directly utilized their count results that are the most reliable outputs
available from the implemented systems including commercial software. In the test,
the Traficon VIP3D.2 detector was chosen to capture the traffic volume and speed
data. The reason for using this device to capture data was that it has been deployed at
many locations, including the test locations and proven to be reliable by local traffic

engineers.

Based on the vehicle count data, the queue lengths can be estimated with a
model developed in this study. With the estimated queue length, an innovative
algorithm can be applied to calculate the corresponding control delays. Signal cycle
failures can be calculated with the estimated queue length. The author also proposed
another algorithm to detect cycle failures by tracking the end of traffic queue (Zheng
et al 2005). This algorithm is proven to be robust with an accuracy rate of about 98%.

A mode-based background extraction method was employed for this task.
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Figure 3-1 Flow Chart of the Methodology

Input Data and Layout of Intersection with Sensors
Figure 3-2 shows the ideal layout of an approach of an intersection. In the

scenario shown in the figure, it is assumed that:

1. Right-turn vehicles will use the first lane (right-turn only lane);

2. Letft-turn vehicles will enter the fourth lane (left-turn-only lane); and
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3. Through vehicles will use the second and third lanes and are evenly

distributed in the two lanes (through movement only).

4. All four lanes are in the same signal phase group, i.e. protected left-turn

green, through, and right-turn green signals are concurrent.

.

Exit
Loop 1

Queue 1

Exit
Loop 2

Exit
Loop 3

Exit
Loop 4

Figure 3-2 Configuration of an Approach with Virtual Loops

Figure 3-2 also shows a typical configuration of traffic detectors. In my
algorithm, traffic detectors are required to provide only vehicle count data. Therefore,
the traffic sensors may be inductive loops, video cameras, RTMS etc. These kinds of
traffic detectors have been widely implemented across the county and are capable of

providing reasonably reliable traffic count data.
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Modeling Queue Length

Queue length data can be straightforwardly derived from vehicle count data.
Figure 3-2 shows a typical configuration of traffic detectors for queue length detection
at an ideal intersection approach. The analysis starts at the beginning of a red phase
t.(1). Assume that the queue length on lane 7 at ¢,(1) is Q;, where i =1, 2, 3, and 4 (lane
is numbered from right to left as shown in Figure 3-2). At the end of the red phase, i.e.
the beginning of the first green phase #,(1), the entry loops detected a total of 1V,(1)
vehicles entered the detection zone and the right-turn loop detected OV,(1,1) vehicles
completed right turn during the first red phase. Then a total of IV,(1)-OV,(1,1) vehicles
added to the initial queues through the first red phase. Depending on the intended
movements (i.e. through, left turn, and right turn), these vehicles enter different
queues. For the purpose of queue modeling, the author assumes that a vehicle will
follow the lane layout for its intended movement and join the shortest queue whenever

choices are available.

Assume that the right-turn to total volume ratio is rr and the left-turn to total

volume ratio is Ir. The queue lengths at the end of the (k+1)" (k>1) red phase are

Right turn lane: O, (k+11)= 0, (k.)+ IV, (k+1)-rr(k +1) = OV (k +1.}) (1)

Through lanes: Q. (k+1,2) = Q (k,2) + IV, (k+1)-(1—=rr(k +1) = Ir(k +1))/2 (2)
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and: O, (k+1.3) = Q,(k,3)+ IV, (k +1)- (1= rr(k + 1) = Ir(k +1))/2
3)
Left turn lane: O, (k+14) = O, (kA + IV, (k +1)-Ir(k +1)
“)

Where OV,(k+1,1) represents number of vehicles detected by the exit loop at
the right-turn lane during the (k+1)" red phase and IV,(k+1) represents number of
vehicles detected by all entry loops during the (k+1)" red phase. Qg(k) represents the

queue length at the end of the " green phase and can be calculated as follows:

Right turn lane: 0, (k1) = O, (k1) + IV, (k) - rr(k) — OV (k.])
(5)
Through lane: 0,(k2) = Q,(k.2)+ IV, (k) - (1= rr(k) ~Ir(k)) /2~ OV, (k.2)
(6)

and: 0, (k.2) = O,(k3)+ IV, (k)-(1 = rr(k) = Ir(k)) | 2= OV, (k.3)
(7
Left turn lane: 0, (k4) = Q,(k4)+ IV, (k) - Ir(k)— OV, (k.4)

(8)
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Where OVy(k,i) represents number of vehicles detected by the exit loop at lane
i, ie[1, 4], during the green phase of interval k and [V,(k) represents number of
vehicles detected by all entry loops during the green phase of interval k. Right-turn
and left-turn volume ratios can be estimated with historical data and updated

periodically using Equation (9) and (10), respectively.

OV (k1) + OV, (k1)
rr(k+1)=— =

> OV, (k,i)+ OV, (k)
9
Ir(k+1) = — OV, (k4)

> OV, (k.i)+ OV, (k)
(10)

When k=1, the queue lengths are

0.4 =0, +1V.(1)-rr(1)-0V (L)

(11)
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O.L2)=0,+ 1V, (1)-(A-rr()=Ir(1))/2

(12)
0,3y =0, + IV, ()-(1=rr() - Ir(1))/2
(13)

0,1.4) =0, +1V.(1)-Ir()

(14)

0,01 =0, + 1V, (1)-rr() - OV (L)

(15)

0,(1.2) = 0,12+ 1V, (1)-A—rr()~Ir(1)) - OV, (1,2)/2
(16)

0,(13)=0,03)+ 1V, () -(1-rr() - Ir(1)) - OV, (1,3)/ 2
(17)

0,04 =0.04)+1V,(1)-Ir()-0V,(1,4)

(18)

As shown in the equations above, the initial queue lengths on all four lanes
should be known to start the process. Considering that cycle failure do not exist during

off-peak hours at most intersections, I can assume Q;=0,=03= Q,=0 if the process is
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started during off-peak hours. As for the initial turning volume ratios, rr(/) and Ir(1),

we can estimate values from historical data. The cost for incorrect initial values is
diminishing and after first few cycles, the turning volume ratios should adapt to their
correct values because these ratios are continuously updated using virtual loop

measured volumes.

Although equations are given to only the scenario shown in Figure 3-2, the
same logic can be extended to other scenarios. When shared lanes exist, probability
theory will be employed to model the vehicle lane arrivals and real-time feed back
information will be needed to tune up the probability models for modeling accuracy.
However, as a study to initiate and demonstrate the idea, this study will not investigate

the details of such shared lane scenarios.

Measuring Control Delay

Based on the calculated queue length, together with vehicle count data, average
control delay can be estimated. The area between the entrance loop and the exit loop is

called the measuring zone. Assume the distance from the entrance loops to the exit

loops is L and the speed limit on the approach is sg¢r. The time needed to traverse the

length of L with s4ris
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(19)

When a vehicle 7 enters the measuring zone, its entry is time-stamped as en;
and recorded in a log file. Similarly when a vehicle j exits the measuring zone, its
departure time-stamp de; is also recorded. By comparing the entry time and the

departure time of vehicle i, its control delay can be calculated as

cd, =en, —de, ~1t,
(20)

In reality, however, it is difficult to match the entry and departure time for each

vehicle. Therefore, only average delay data can be collected using this approach.

Assume that we start to collect control delay data at time t, when the total
number of vehicles in the measuring zone is N. Because I do not know when the N
vehicles entered, we cannot provide control delay measurements for these vehicles.
After all the N vehicles have checked out at ¢, we can start to calculate control delay.
To estimate the average control delay from ¢ to f,, we need to know the number of
vehicles exited from the detection zone Ny. Ny should be the sum of all the exit loops
detected vehicles from ¢ to .. Then the average control delay of the N, vehicles can

be calculated using Equation (21).
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Although the logged en; and de;+y may not be for the same vehicle, mismatch
is not an issue for calculating the average control delay as far as all the timestamps of

the N, vehicles are included in the calculation.

Detecting Cycle Failure

Cycle failure data can be derived from the calculated queue lengths and the
real-time signal control status. The maximum queue length in a red phase will be
recorded. If the maximum queue length for a lane at the end of a red phase is larger
than the number of vehicles passed the exit detector at the following green phase, there
is at least one vehicle failed to pass the intersection in one signal cycle, which means a
cycle failure happened. The number of vehicles that experienced cycle failure can also

be detected. The flow chart for cycle failure detection is shown in Figure 3-3.
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Chapter 4 A Prototype System with Input from Counting

Sensors

A Prototype System in Real-Time Operations

To demonstrate and test my algorithm that measures intersection performance,
a prototype system, which is called InterPer, is developed and tested with field data.
Figure 4-1 shows the flow chart of the prototype system. To demonstrate the
feasibility of InterPer, it was tested with VIPs, which is increasingly deployed for
traffic detection in the field. As mentioned before, the InterPer system is also capable

of receiving input data from other traffic sensors, such inductive loops.

Trulhic Camera

Applications

Figure 4-1 Flow Chart of the Prototype System
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Two tratfic cameras, one at the entrance and one at the exit of the approach,
were connected to the Traficon device, which is a VIP3D.2 VIP. The VIP3D.2 card
can process video images from two cameras at the same time. Figure 4-2 show a

screen shot of the user interface of VIP3D.2 card. The black boxes are virtual loops

that count the number of vehicle passing over them.

%

For tal, ovesa Bl

Figure 4-2 Screen shot of the User Interface of VIP3D.2 Card
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The traffic count data were transferred to a computer in an html file through an

Ethernet cable. Currently the Traficon device updates data once every five seconds.
The InterPer system, which was developed by using MICROSOFT VISUAL C#, was
installed on the computer and read the vehicle count data from the html file. Using the
algorithm introduced in Chapter 3, the queue length and control delay were estimated.
Figure 4-3 shows the user interface, with output and input data presented, of the

prototype system.
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Figure 4-3 User Interface of the Prototype System

There are two ways to acquire the traffic signal status. The first one is to

connect the InterPer system with the traffic controller and directly read signal status
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from the controller. This way is accurate but requires extra hardware. The second one

is to estimate the traffic signal status based on the video data. There are no extra
hardware requirements in the method. However, it would be less accurate compared
with the first method. Users can specify either of the two options based on the

hardware available and the accuracy level required.

Test on Field Data

The test site was located at the intersection of SR 99 and 200" Street SW,
Lynnwood, Washington State. This intersection is one of the busiest in the City of
Lynnwood and its layout is very close to the ideal intersection discussed in Chapter 3.
City of Lynnwood installed traffic cameras at both the stop line and an upstream
location to monitor and manage traffic. Two VCRs were installed to record the traffic
video for the field test. The test was performed for the northbound approach for about
100 minutes during afternoon peak hours. The queue length and control delay
measured by the InterPer system were compared with the ground truth data measured
manually. The ground truth data of control delay were collected using the HCM field

measurement technique (HCM 2000). The test results were summarized in Table 4-1.



Table 4-1 Test Results of InterPer System
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. Volume In Volume Out Queue Length Control Delay
Signal Ground Ground Ground Ground
Cycle | Measured Truth Measured Truth Measured Truth Measured Truth

1 54 57 54 56 11 12 32 35
2 33 36 35 35 8 9 21 22
3 40 47 45 47 10 11 28 32
4 42 48 47 47 11 11 35 40
5 37 52 52 52 8 11 30 32
6 52 58 57 58 9 11 28 33
7 66 70 65 69 11 12 23 25
8 37 37 44 38 10 10 42 43
9 41 43 42 42 10 11 25 28
10 46 47 40 48 11 11 32 33
11 33 36 34 34 11 10 43 48
12 66 70 55 69 10 12 31 34
13 35 36 33 39 7 10 50 54
14 29 30 30 30 9 10 80 82
15 55 60 57 57 9 11 36 37
16 39 40 31 44 10 11 50 53
17 38 48 46 48 13 11 74 77
18 64 65 62 65 10 11 41 43

19 40 40 35 38 10 11 54 57

20 45 46 40 48 11 11 64 68

21 47 49 40 49 10 11 45 48

22 41 53 50 33 9 11 49 58

23 41 43 24 43 12 11 67 70

24 34 35 34 35 12 10 90 91

25 47 48 47 48 11 11 34 36

26 46 58 55 58 8 12 23 24

27 35 38 38 38 8 10 41 46

28 43 57 55 57 10 11 45 46

29 49 50 50 50 10 11 37 37

30 50 55 54 55 10 12 39 42

31 47 47 42 47 10 11 49 53

32 32 36 35 36 12 10 39 44

33 80 83 76 83 Il 12 38 41

34 8 8 6 8 3 3 13 15

35 57 57 50 57 11 11 37 40

36 59 62 45 62 13 12 85 90

37 53 55 51 55 9 12 37 40

38 47 51 49 51 10 11 37 41

39 29 34 33 34 8 10 29 31

40 49 50 41 49 8 11 49 54

Average 44,7 48.4 44.5 48.3 9.9 10.8 42.6 45.6
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The traffic volumes were under-counted at both entrance and exit of the

detection zone. T-test showed that the t-ratio values for the entrance volume and exit
volume were -6.04 and -4.79, respectively (t-critical = 2.02). As discussed above, we
would not repeat other researches on counting vehicles. Instead, we borrowed
commercially available traffic counting results and assumed that they are accurate
enough. However, if the traffic counts were not sufficiently accurate, the accuracy
levels of the estimated queue length and control delay would be decreased. The test
results showed that the estimated queue length was also underestimated, with the t-
ratio value of -4.04 (t-critical = 2.02) compared with ground truth data. One reason for
the underestimation was that the length of detection zone was limited. Queued
vehicles beyond the field of view of the entrance detector cannot be detected and
would not be counted into the queue. The average control delay therefore was
underestimated as well, with the t-ratio value of -11.24 (t-critical = 2.02) compared
with ground truth data. One of the reasons for the underestimated control delay was
that the queue length was underestimated. In average the error of estimated control
delay was about 3 second/vehicle, which is accurate enough from practical perspective

and would still predict the right Level of Service in most cases.

Test on Simulated Data
The test with field collected data showed that the control delay estimation
algorithm is practical but its accuracy depends largely on the accuracy of traffic count.

As described earlier the field test involved errors from traffic sensors that were beyond
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the system boundary of this research. Therefore, the accuracy of our algorithm may be

underestimated in the field test. To test the algorithm in an ideal system, a simulation
model has been developed using the software of VISSIM. The same simulation model
was also applied to evaluate the impact of the Transit Signal Priority (TSP) system in
south Snohomish County. Details of the simulation model and the TSP system can be
found in Chapter 6 — “Application Example for Practice: Evaluating Transit Signal
Priority”. Table 4-2 shows the test results of the control delay estimation algorithm

using data from the simulation model.

Table 4-2 Test Results of Simulated Data

. Queue Length Control Delay . Queue Length Control Delay
Signal Ground Ground Signal Ground Ground
Cycle | Measured Truth Measured Truth Cycle |Measured Truth Measured Truth

1 0 0 0.0 0 24 1 1 6.6 10.7
2 1 2 6.1 4.9 25 1 2 0.0 0
3 1 0 1.1 0 26 1 0 2.1 1.4
4 3 0 0.8 0 27 1 0 0.0 0
5 1 0 0.0 0 28 1 1 0.0 0
6 0 0 0.0 0 29 1 1 3.1 0
7 1 0 0.0 0 30 2 2 7.6 5.7
8 1 0 2.1 0.9 31 2 0 1.6 0
9 1 0 1.1 0 32 3 1 1.9 0
10 2 1 1.6 0 33 2 1 0.0 0
11 3 2 20.8 14.9 34 3 2 26.6 8.4

12 1 1 0.0 0 35 2 2 9.1 0

13 2 1 0.0 0 36 1 0 0.0 0

14 3 2 20.8 6.1 37 2 1 26.1 14

15 1 1 2.9 1.6 38 1 1 0.0 0

16 1 2 1.1 6.2 39 4 2 13.8 8.5

17 4 2 15.9 27.8 40 2 0 174 0.5

18 2 1 1.8 0.8 41 1 0 0.0 2.1

19 I 2 4.1 14.8 42 I { 0.0 0

20 0 1 0.0 0 43 2 1 0.0 3.6

21 1 1 2.1 3.3 44 1 1 3.1 3.8

22 3 2 4.7 9.3 45 1 1 0.0 0

23 2 2 1.1 4.7 |Average 1.6 1.0 4.6 43
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Since VISSIM tracks each vehicle’s movement in the simulation model, it can

measure control delays and queue length nearly perfectly. The ground truth values in
Table 4-2 were directly provided by the VISSIM’s delay and queue length evaluation
tools. The author also set up vehicle counting detectors in the simulation model. The
vehicle counts provided by VISSIM were saved in a data file and post-processed with

the algorithm.

A t-test was conducted to evaluate the difference between the algorithm
produced queue lengths and simulation model measure queue lengths. The t-ratio
value was 4.40 with the t-critical value of 2.02 (two-tails). This indicates that the two
series of queue length data are statistically different. However, this difference was
caused by the definition disparity of queue length. In VISSIM, queue length is defined
as vehicles stopped before the red light while, in the control delay estimation
algorithm, queue length is referred to as the number of vehicles added to the detection
zone during the red phase, regardless of their speeds. Therefore, the simulated queue
lengths were slightly lower than the calculated queue lengths using the algorithm.
Taking the definition difference into account, the results from simulation were just as
expected and proved that the control delay estimation algorithm can produce
reasonably accurate traffic queue length. The average of simulated control delay was
4.6 second per vehicle, with the average of ground truth data of 4.3 second per vehicle.
The simulation result of control delays also showed that the algorithm is robust in

measuring intersection performance.
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Chapter’s Conclusion

A prototype system for intersection performance measurement named the
InterPer has been developed and tested with field data to demonstrate and test the
control delay estimation algorithm. In this test, the Traficon VIPs were applied to
provide traffic count data. Field data were collected at the intersection of SR 99 and
200" Street SW in City of Lynnwood, Washington State. The test results based on the
field-collected data showed that the estimated queue length and control delay was
slightly lower than the ground truth data. One of the reasons for the error was that the
traffic was undercounted by the VIPs. The other reason was that the length of the
detection zone was limited in length which caused overflowed vehicles dropped out
from queue length calculations. This problem is more likely to occur during peak

hours.

To test my algorithm under ideal situations, a simulation model was built up
with the software of VISSIM. The same simulation model was also applied to evaluate
the traffic impact of the TSP system in south Snohomish County. The simulation
results of queue length and control delay were more accurate, compared with those
based ficld-collected data. The simulation test shows that our algorithm is reliable and
robust in measuring intersection performances, especially when traffic detectors

provide reliable counts.
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Notes to Chapter 4

1. Highway Capacity Manual 2000 (2000) Transportation Research Board, National
Research Council, Washington, D.C.
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Chapter S Measuring Intersection Performance with Video

Image Processing

An ideal video image processing system

The control delay estimation algorithm and the InterPer system are based on
the assumption that the layout of the traffic sensors is in the ideal situation discussed
in Chapter 3. This algorithm requires input data of two sensors per lane one at the
entrance and the other at the exit of the detection zone. The algorithm also assumes
that the sensors can count vehicles accurately. However, at many locations there may
be only one camera installed at each approach and operates as presence detectors,
which can not provide reliable traffic counting data. To measure intersection
performance at these intersections, a system using video image processing has been
also proposed and partially developed. Figure 5-1 shows the flow chart of the

intersection performance measurement system using video image processing.

In Figure 5-1, each block represents a functional module. The first module is to
extract background image from traffic video stream. By comparing the background
image with current traffic image, vehicles can be detected by image processing
algorithms. With the extracted background image, the module of “Feature-Based
Vehicle Detection and Tracking” would detect and track each individual vehicle. With

each vehicle tracked, the control delay, the queue length, and the cycle failure can be
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measured. The cycle failure can also be detected by tracking the position of the end-

of-queue. Currently, only the modules of “extracting background image” and
“detecting cycle failure” have been completely developed. Other modules are
scheduled to be developed at the Smart Transportation Applications and Research

Laboratory (STAR Lab) at the University of Washington.

Extracting \Bmkgmund Image ﬁ

Peature-Based Vehiclé Detection ] 1

3 3 SR
. and Tracking

L Mﬁasunng Queue Length H

SR RN

Detecting Cyele Failure

.
@

Calcuiéﬁiﬁg@ommi Delays

A

Measuring Vehicle Speed

Output Traffic Dats }

Figure 5-1 Flow Chat of an Ideal Video Image Processing System
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Extracting background image

Introduction

A popular approach to obtain traffic parameters is called “image subtraction.”
It subtracts background image from current image to detect objects moving across a
constant scene (Shapiro and Stockman, 2001). The constant scene is referred to as the
background, which contains merely static objects (e.g. road pavement, roadside
buildings. etc.) and is clear of moving vehicles or pedestrians. Some of the methods
detect vehicles by directly comparing the three color values (measures of red, green,
and blue). To eliminate the effects from the changes of illumination, Rojas and
Crisman (1997) proposed to compare color in the chromaticity plane, where the
measured colors of the same object under different illuminations will concentrate to
one value. The color values in the chromaticity plane can be easily transformed from
the RGB color space (Rojas and Crisman, 1997). The background image can also be
updated with a Kalman filter-based adaptive model to accommodate the change of
lighting conditions (Malik and Russell, 1997). Therefore, the background image must
be known to run the image subtraction algorithm efficiently. To get the background
image of a scene, I need to use video image processing to extract the background
information from a series of traffic images, because it is nearly impossible to find a

frame in a traffic video stream without a single moving vehicle or pedestrian on a busy

urban road.
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There are several ways to extract background images from traffic video

streams. Avery et al (2004) introduced a background image extraction algorithm based
on the changes of pixel colors from frame to frame. Each pixel in the previous frame
was compared with the same pixel in several consecutive frames. If their color values
stayed the same, it was assumed that this pixel was not occupied by moving vehicles
and the color values were assigned to the corresponding pixel on the background
image. This process was iterated until color values for all pixels in the background
image were determined. This algorithm proved to work well on freeways under non-
congested conditions. Gupte ef a/ (2002) used a similar method to extract background
images. They first calculated a binary motion mask, which is the subtraction of two
successive frames. Any pixel with different color values between these two frames
was assumed to be part of a moving object. A motion mask was used as a gating
function to extract the background image from traffic images by filtering out moving
objects. After a sequence of frames is processed, the entire background image could be
extracted. Elgammal et al (1999) studied each pixel’s value in the three color channels
(red, green, and blue) in an image sequence, and tried to find the distribution of these
values. They assumed that the values formed a Gaussian distribution, where the
probability of a pixel being a background pixel could be estimated. Then the decision
on whether it is a background or a foreground pixel is made by comparing the
estimated probability with a given threshold. This method can be used for both
freeways and intersections. Cucchiara et al (2003) also looked at pixel values in an

image series, but they suggested using the medians of color values in the series as the



53
background values. This method can also be applied to both freeways and

intersections. Zheng et al (2006) used median background extraction in a video image
application for detecting signal-cycle failure at urban intersections. The background
extraction method requires sorting the image series to obtain the median values and

hence demands more computing time.

In this research, a new method that can quickly extract background images by
finding the mode of the pixel value series is developed and introduced. The details of
this method are presented in the following section. Then field tests on this method are
described and the test results are discussed. Summary about the utility of this method

are provided at the end of this section.

Methodology

In a series of traffic image frames, the color values of a pixel at location (X, y)
at time t are I(x, y, t). In most cases the pixel’s color values are in the Red, Green, and
Blue (RGB) color space, and I(x, y, t) is a vector with three elements: Ir(x, y, t), I5(x,
y, t), and Ip(x, y, t). For a given pixel (X, y), its color values from time t; to time t;, are

represented by matrix M(x, y) as follows:

M, v) = {Ix, vy, t), Ix, y, ti), I(x, y, t2), ..., X, ¥y, tin)}

(D
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This given pixel has only two possible states in the traffic image: obstructed by
a moving vehicle or clear from obstruction. If it is obstructed by a moving vehicle
(common referred as foreground), the observed color values are actually from the
obstructing vehicle. The pixel’s color values in the periods of being obstructed can be

expressed as:

Mix, y) = {Ix, y, tr), IX y, tr2), I(X, y, tr3), ..., I(X, vy, 1)}
)
where tpy, tpo, tra, ..., and ty; are the times when the pixel is occupied by the

foreground.

If this pixel is not obstructed by a moving object, its observed color values
should be those of the background. The pixel’s color values in this case are in the

following set:

MB(Xa Y) = {I(Xa Y, tBl)a I(Xe y, tBZ)a I(Xa Y, tB3)= seey I(X: Y, tB.k)}
(3)
where tgy, tg2, tg3, ..., and tgy are the times when the pixel is not occupied by

the foreground.
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Mi(x, y) and Mp(x, Y) have the following relationships:

Mx, y) = Metx, v) Y Mp(x, ) and ¢ = Mi(x, y) O Max, y)

4

where ¢ represents an empty set.

Since the background is motionless, the color values of this pixel would
approximately be the same during the entire analysis time (here I assume the analysis

time is short enough to ignore the luminance change of the scene):

Ix, vy, ter) = I(x, vy, tg2) = Ix, y, tgz3) = ... = Ix, vy, tsx)

(5)

For the foreground, however, since the moving vehicles occupying the pixel

may be in different colors and shapes at different times, we cannot expect that:

Ix, vy, te) = Ix, y, tr) = Ix, vy, ty) = .. = Ix, y, trj)

(6)
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Therefore, I assume that it should be the background-pixel color vector that

occurs the most frequently in M(x, y) and this concludes that:

I(x, Y, tsi) = Mode (M(x, y))

(7
where tg; is the time when the pixel is not occupied by the foreground and

Mode(M(x, y)) represents the mode of color values in M(x, y).

By calculating the mode of the M(x, y), the background color values at
location (x, y) can be determined. After applying the same process to each pixel in the

image, a background image will be extracted.

The assumption may be violated when the analysis time period, ta = (t; — tin),
is not long enough and a stopped vehicle occupies the pixel during most of the period
ta. The possibility to violate the assumption can be lowered by increasing ta to a
reasonable level. For some applications (e.g. image extraction at a congested
intersection) that require a longer ta, we can use a lower sampling rate to balance the
computing work load. With a lower sampling rate, the system can process fewer
amount of frames over even a longer period ts. In the field test I used a sampling rate

of 1 fps (frame per second).
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Although the background is motionless, the background color values are not
always the same because of disturbances in lighting, atmosphere, cameras, €tc.
Consequently, Equation (5) is not usually 100% true. This is illustrated in Figure 5-2,
which shows the histograms of a given pixel’s background color values over a two

minute interval.

Histogram of Red Channel

1 21 41 61 81 101 121 141 181 181 201 221 241

Cotor Value

Histogram of Green Channel

Color Value

Histogram of Blue Channel

Color Value

Figure 5-2 Background Variance in Two Minutes

To accommodate the small variations of background pixel values due to these
disturbances and make the proposed algorithm more robust, I introduce a function to
aggregate several color value in a small range into one bin. The function in my

algorithm is:
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(i+1)xs-1
frequency,
h; = J=ixs , i =0, 1, 2, vees (256/s-1)

(8)

Where frequencyj is the frequency of color value j in the series M(x, y), s is the
size of the range, and hi is the aggregated bin value. With the function (8), 256 color
levels can be regrouped into 256/s bins. Using the frequencies of these regrouped bins,
the impacts of disturbances are reduced. This robustness is not at the cost of reduced
color resolution. If bin i is identified to be the mode, then we do a secondary mode
operation to find the best color value of the pixel. That is I calculate the mode again
for the s color values: i x s, i xs+ 1,ixs+2,...,(i+1)xs-1. This secondary

mode is considered the best background color value.

In this study, I used s = 4 according to the quality of my images. This

corresponds to a total bin number of 64.

Test and discussion

All the field test data were obtained from traffic monitoring cameras that were
not specifically installed and calibrated for video image processing. Although such
cameras may not generate the best video data for traffic analysis purposes, they are

already widely deployed across the country for day-to-day traffic management
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operations, and are, therefore, a potentially robust source of traffic video data. Image

processing algorithms that can be proven to be sufficiently accurate in extracting
traffic data from such cameras will be more robust and have a much larger application
domain than those that require data from specially placed and specially calibrated
cameras. Consequently, the field test data were all taken from cameras that were
already in the field for traffic detection or other traffic management purposes. The
STAR Lab at the University of Washington has a fiber optic line connected to the
Traffic System Management Center (TSMC) at the Washington State Department of
Transportation (WSDOT). This fiber optic line brings full motion video to the STAR
Lab from nearly 300 surveillance video cameras deployed in the Greater Seattle area.
My freeway test video images were captured at the STAR Lab from these surveillance

video cameras.

The first field test was conducted on a freeway with free-flow traffic. Figure 5-
3 shows the extracted backgrounds for this test. Figure 5-3 (a) is a typical snapshot of
the traffic stream at this test site. It shows that there was no traffic congestion during
the test period. Figure 5-3 (b) ~ (e) shows the extracted backgrounds for the same
video stream using different analysis time periods, ta. Figure 5-3 (b) shows that when
ta = 10 seconds, the extracted background contained wrong pixel values for a
significant portion of the background image. When ty was increased to 30 seconds,
most background pixels received the correct color values except for some locations at

the far side of the image, identified by the author-added arrow in Figure 5-3 (¢). When
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ta was further increased to 60 seconds, the extracted backKground image (Figure 5-3

(d)) was almost perfect. As shown in Figure 5-3 (e), when t, was three minutes, the
results were nearly the same as when t4 was one minute. The test shows that, for a ta
longer than one minute, the algorithm will work well for freeway applications in free

flow conditions.

i

(a) Traffic Image (b) Background
extracted in 10 seconds

(¢) Background (d) Background (e) Background extracted
extracted in 30 seconds extracted in one minute in three minutes

Figure 5-3 Background extraction on freeway in free flow

The second field test was performed on a section of congested freeway. The
traftic condition for this test site is shown in Figure 5-4 (a). Obviously, traffic density
is higher at this site than at the fist test site. Therefore, a longer t4 1s desired. Figure 5-

4 (b) ~ (f) shows the background images extracted when ty = 2 minutes, 4 minutes, 6



61
minutes, 10 minutes, and 20 minutes, respectively. The figures indicate that, when

traffic is congested, the extracted background will not be as good as that for free flow
condition, especially on the far side of the image. Figure 5-4 (e) and (f) show that,
when t4 was greater than 10 minutes, the quality of the extracted background did not
increase. The fact that the background quality does not improve and may even become
worse as ty grows to too long may be a result of changing factors such as the position
of the sun that can, over time, affect pixel colors significantly. The quality of the
background image appeared to be best when t, was six minutes. Though the colors
for the far side background pixels were not correct, they may not hurt follow-up image
processing steps because traffic detections are most likely done at the near side where
image resolution is better. Therefore, this method can also extract useful background

image under congested conditions.
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(a) Traffic Image (b) Background (c) Background extracted
extracted in two minutes in four minutes

(d) Background (e) Background () Background
extracted in six minutes extracted in 10 minutes extracted in 20 minutes

Figure 5-4 Background extraction on congested freeway

The location of the last field test was at a signalized intersection. At a
signalized intersection, a vehicle may stay still for minutes even though there is no
congestion. Figure 5-5 shows the results for this final test with different values of ta.
Figure 5-5 (a) shows a snapshot of the traffic when the signal was red. Figure 5-5 (b)
shows the extracted background image when the analysis period t, was one minute
and about half of ty had a red signal and the other half had green or yellow signals.
Figure 5-5 (¢) ~ (¢) shows the extracted background when ty was two minutes, five
minutes, and 10 minutes, respectively. These images provide most of the background

with good quality, especially as ty gets longer. However, these are not perfect
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background images, and flawed pixels are located near the stop line, where most of the
image processing is performed. Conversely, Figure 5-5 (f) shows a perfect
background image extracted from the same traffic video stream with t4 = 1 minute.
The only difference is that this image was extracted when the traffic signals were
green for most of the time period ta. Therefore, if the user can select an analysis
period in the video stream that has a sufficient amount of green time, the algorithm

can quickly extract a perfect background image.

The field test data can also demonstrate the effectiveness of the proposed
background-extraction method. A pixel in the congested freeway images was studied
for this purpose. Position of the pixel was identified by the author-added square and
arrow in Figure 5-4 (d). The pixel’s histograms of three color channels in one minute
were shown in Figure 5-6. Traffic video showed that in the test period 23 vehicles
passed over the pixel, with eight vehicles in black, six in gray, five in red, and four in
white. All of these vehicles were passenger cars or pickups. The frame rate was 4
frame/second in the test, and the manual counting showed that of the 240 frames in the
test minute, the pixel was not obstructed by any vehicles in 116 frames, covered by
black vehicles in 37 frames, by gray vehicles in 31 frames, by red vehicles in 29
frames, and by white vehicles in 27 frames. Because of these vehicles, the pixel’s

color histograms extended to a wider range.
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Figure 5-5 Background extraction for a signalized intersection

The distribution of pixel color histograms was close to multiple Gaussians, as
identified by Stauffer and Grimson (1999). Based on the scenario described, the
highest columns showed the correct background color values, and the lower curves
showed the colors of vehicles. As shown in Figure 5-6, the modes of each color
channel were the colors that correspond to the highest columns. The median color
values were interfered by vehicle colors and did not sit in the right ranges of the true
background colors. The mean color values were the least accurate because they were
interfered the most by the vehicle colors. This example indicated that the proposed

background extraction algorithm using color modes was more robust than the
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background extraction algorithm using color medians. However, the comparison is

only based on the data I collected, and I cannot conclude that the proposed method

performs better in all conditions.
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Figure 5-6 Illustration of Background Extraction Using Mode

The proposed algorithm is not only more robust, but also faster than the
median background extraction algorithm. To find the median value of a data set, the
data need to be sorted first. There are several sorting algorithms, such as bubble,
insertion, selection, shell, heap, merge, and quick sorts (please refer to (Carrano et al.
1998) for details of these sorting algorithms). For bubble, insertion, selection, and

shell sorts, the algorithmic complexity, or relative efficiency, is O (n?), where O (Big
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O notation) is a mathematical notation used in computer science to measure the

complexity of an algorithm and n represents the size of the data set. If an algorithm
has O (n®) on average, then its execution time increases quadratically with n. These
sorting algorithms are the least efficient, especially when the size of the data set is
large. For heap, merge, and quick sorts, the algorithmic complexity is O (n*log (n)),
which is relatively faster than other sorting algorithms (Carrano et al, 1998). The
algorithmic complexity of the mode algorithm, however, is only O (n) because it takes
just one scan to find the mode of a data set. Therefore, the mode background
extraction algorithm will be faster than the median algorithm, no matter which sorting
algorithm is used to find the median values. This performance difference between the
median algorithm and the mode algorithm proposed in this study has been
demonstrated with the field data. Table 5-1 summarizes the computing times
consumed by the two algorithms to extract background from the same video data sets.
The experiments were conducted on a DELL personal computer (Pentium 4 at 3.0
GHz, 1.00GB of RAM, Windows XP). Three test video data sets, each recorded at a
different location, were used for this test. The median background extraction algorithm
was implemented based on the quick sort algorithm. As can be seen in Table 5-1, the
mode algorithm performed approximately the same when the data set is small.
However, when the number of processed frames gets bigger, the saving of computing

time with the mode algorithm becomes more significant.



Table 5-1 Comparison of Computing Time
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Test Location

Number of

Computing Time (seconds)

Frames Processed Mode Median
Algorithm Algorithm
6 2 2
Freeway with free flow traffic 60 20 22
600 219 284
6 2 2
Congested freeway 60 20 21
600 222 251
6 2 2
Signalized intersection 60 20 22
600 231 253

Summary

In this research, a new algorithm to extract background images from traffic
video streams is introduced. This algorithm analyzes each pixel’s color values in a
series of frames captured during a particular time period, and then uses the mode of
the series as the correct color value for the background image. To handle small
disturbances of background color over a short time period, a function is used to

aggregate neighbor color values into one bin for mode calculation. With this function,
the algorithm is more robust and lowers the impact of the disturbances resulted from

environmental factors. This algorithm does not require sorting and hence is easy to

implement and fast to extract background images.
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Field tests were performed with video data from ftraffic monitoring cameras

that were not specifically configured for video image processing. The test results
showed that the algorithm could extract nearly perfect backgrounds on freeways when
traffic was in free flow condition. For congested freeways, the algorithm could still
generate background images for image processing using the near side of the image.
Test results also demonstrated that the algorithm is effective to generate clear and

nearly perfect backgrounds at urban signalized intersections.

Detecting Cycle Failure

Introduction

Cycle failure happens when one or more queued vehicles are unable to depart
due to insufficient capacity during a signal cycle. The HCM provides methodologies
to estimate LOS and queue length using roadway geometry, traffic volumes, and
signal timing data. Another approach to estimate these measures of effectiveness is
through simulation models that simulate the movement of each vehicle. These models
require input data similar to that used by the HCM methodologies. Obviously, both
types of methodologies depend on quality inputs to estimate the measures of
effectiveness. If the inputs do not fully represent the actual diversity in traffic demand,
the results from these methods may not properly reflect the performance of a signal

control system.
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Furthermore, approaches other than the aforementioned ones are needed for
evaluating the performance of modern traffic control applications, which aim to adapt
signal timing plans to changing traffic volumes and conditions. Control technologies,
such as the Adaptive Signal Control (ASC) and the TSP systems, require evaluations
under actual traffic conditions because they are specifically designed to respond

varying traffic conditions.

For example, because a TSP system impacts control delay for both transit
vehicles and general purpose vehicles, several traffic parameters must be measured
onsite in order to evaluate the benefit of the TSP system through comparisons of the
before and after scenarios. The number of cycle failure is considered one of the most
useful parameters for measuring drivers’ frustration toward a signal control system.
Real-time cycle failure data can also be used to improve dynamic signal control. The
occurrence of signal cycle failure on a phase indicates that the flow rate exceeds the
capacity of the phase. If this information is available in real time in a traffic controller,
the traffic signal control system may be able to optimize signal timing to provide more
green time for the over-flowed phase. Another example concerns Advance Traveler
Information Systems (ATIS). A key evaluation question is whether an ATIS is
correctly describing the current performance of an arterial. The performance can be
measured in terms of LOS, queue length, and/or cycle failure. Being able to detect and

broadcast the occurrence of cycle failure (that implies “this intersection is currently
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congested™) will help the pubic to perceive traveler information more specifically.

Therefore, detection of cycle failure in real-time is of practical significance.

In this research, cycle failure is defined from a drivers’ perspective, i.e., cycle
failure occurs when a driver joining a specific movement queue during the green time
interval is forced to wait through more than one red light to complete the intended
movement via the intersection. A computer system for cycle failure detection was
developed based on this algorithm. The system was tested with field data collected
from VIPs deployed for signal control at two intersections in the City of Lynnwood,

Washington. Test results will be presented and discussed in detail in this section.

Methodology

A VIP deployed for signal control at an intersection is typically mounted at a
fixed location above the intersection facing down toward an intersection approach. In
the camera’s field of view, everything is relatively stable except moving objects such
as vehicles and pedestrians. In a video image, moving objects are regarded as
foreground and the rest as background. When no moving objects appear in an image,

the image shows the complete background scene.

In ordinary full-motion video streams, the frame rate is from 24 frames per

second (fps) to 30 fps. To increase the computational efficiency, the frame rate used in
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the proposed algorithm is four frames per second. Due to the relatively low speed at

intersections, this frame rate is sufficient to capture the continuous movements of

vehicles for my analysis.

In this study, I developed a motion detection algorithm for cycle failure
detection. This video image processing algorithm for cycle failure detection contains
three steps: (1) dynamic threshold determination for segmenting foreground objects
from background images; (2) locating the end-of-queue with motion images; and (3)
determining whether a cycle failure occurred for each lane in each cycle. Details of the

four steps are described in the following sections.

Dynamic Threshold

The background image is extracted based on the algorithm introduce above.
Each frame is compared with the background image. Non-background pixels are
considered to be part of the moving objects such as an automobile, motor cycle,
bicycle, or pedestrian. To determine whether a pixel is a background pixel, we need to
establish a threshold. For a given pixel, if its value difference from the background
value is larger than the threshold, it will be determined as a non-background pixel.
Otherwise, it is confirmed as a background pixel. The threshold may be a constant
value chosen by trial and error or by experience. However, with a dynamically
updated background, a fixed threshold for each frame may not yield satisfying results.

Therefore, a dynamic threshold was employed for this study.
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A dynamic threshold value is calculated for each frame using a difference
image that represents the differences between the background image and the current
image. Each pixel value on the difference image is the absolute difference of pixel
values between the current frame and the background. Therefore, the foreground
pixels in the difference image will have higher values, and the background pixels will
have lower values. Figure 5-7 (b) shows a difference image generated from the current
image shown in Figure 5-7 (a). The grayscale histogram of all pixels in a typical
difference image is shown in Figure 5-7 (¢). Since most of the pixels in the difference
image are part of the background, the histogram has a higher peak on the left. The
other peak on the right of the histogram represents the grayscale distribution for
foreground pixels. The threshold will probably be located at the bottom of the valley
between the two peaks. Gupte ef al (2002) assumed that the threshold should be at the
first point from the left with a significant pixel value difference (90% of the peak
value, for example) corresponding to that of the left peak. However, since the
histogram of the difference image is bimodally distributed, the author prefers using
Otsu’s method (Otsu, 2001) to find the threshold between the two peaks. Otsu’s
method has been widely adopted for threshold searching in image processing studies.

The threshold determined by Otsu’s method minimizes the intra-group variance and

works well for many applications.
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Figure 5-7 Dynamic Threshold

With a specifically identified threshold, the difference image can be transferred
into a binary image, where the pixel value “0” means background and “1” means
foreground. The following analysis is based on this binary image. Figure 5-7 (d)

shows the binary image generated from the current image shown in Figure 5-7 (a).
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The End-of-Queue

In order to detect cycle failure, one must keep tracking the end of queue when
the traffic signal turns green. If the vehicle at the end of a queue clears the
intersection, there is no cycle failure; otherwise, a cycle failure is recorded. In this
program, the user needs to interactively input the position of the stop line and the
longitudinal line of each lane. To determine the end of a queue, motion images were
used. A motion image is the absolute difference of two contiguous frames in a video
stream and shows only the moving objects between the two frames. A fully stopped
vehicle in a queue cannot be reflected in the motion image, but can be shown in the
difference image. By comparing a motion image with the corresponding difference
image, a stopped vehicle can be confirmed. Figure 5-8 shows the flow chart for
identifying stopped vehicles and finding the queue end for a lane. Since there is noise
in both the motion image and difference image, the determined queue end sometimes
changes noticeably, although not because of an approaching vehicle. To make the
result more stable, a median filter was used for the position of the queue end in the
time domain. The positions of the queue end in the last several frames were recorded
and their median was used as the queue end of the current frame. In this study, I chose
to use seven frames for calculating the median. This number of frames produced a
smooth performance of queue-end detection and a quick reaction to the change of
queue length. Figure 5-9 shows a snapshot of the user interface with the identified
end-of-queues. In this picture, the image box on the right shows the motion image.
The reader can see that all stopped vehicles in the two left lanes are not shown in the

motion image, but vehicles moving under the left-turn green signal in the third lane
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from the left are visible. The short horizontal bars at the end of the longitudinal lines

were automatically drawn by the software to mark the detected positions of the end-of-

queues.
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Figure 5-8 Flow Chart for Detecting the Queue End
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Signal data at an intersection can be obtained from the signal controller when
the system runs online. At the current offline development and test stage, however,
signal controller data are unavailable. The status of signal lights is estimated from the
movements of vehicles in the video stream. To detect vehicle movements, a virtual
loop 1s created near the stop line for each lane as shown in Figure 5-9. Such a detector
loop is called a motion loop. Once the stopped vehicle closest to the stop line is
detected as in-motion, it is assumed that the signal light for the lane has just turned

green. Similarly, if the vehicle is detected stopping, the corresponding signal light is

considered turning red.
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When a long and tall vehicle such as a bus runs through the intersection from

the cross streets, it may be projected to the virtual motion loops and trigger false
alarms. To avoid this problem, another virtual loop was placed in the core area of the
intersection to detect long vehicles from cross streets. This is called conflict detection
loop. If this loop is occupied, all the motion loops are disabled because signals at
conflict approaches cannot be green simultaneously. Compared with the signal data
directly from the signal controller, the signal timing estimated by this algorithm is less

accurate.

Determine the Cycle Failure

Once the signal light is determined to be changing from red to green, the
current position of the queue end for a lane is stored. The queue length is expected to
decrease under the green signal and the end-of-queue for each lane is tracked along the
longitudinal line and updated from frame to frame. Figure 5-10 shows the flow chart
for cycle failure detection for one lane in one frame of the video stream. The end-of-
queue position is updated in the current frame and stored for usage in the next frame.
If the end-of-queue reaches the stop line before the signal turns back to red, all
vehicles accumulated in the queue during the previous cycle have been fully
discharged and no cycle failure will occur during this signal cycle. If, when the signal
light turns back to red, the queue end is still behind the stop line, the accumulated
queue have not been fully cleared during the green interval and a cycle failure is

detected for the lane during this signal cycle. During the red signal time, a queue
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length grows and the system sets the end of queue to the last vehicle in the queue and

updates its position with new arrivals. At the end of each signal cycle, detection results

are preserved in a data file.
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System Test and discussion

A video image processing-based cycle failure detection system implementing
the proposed algorithm was developed using Microsoft Visual C#. Video data
recorded by Trafticon VIPs were used to test the system. The VIPs are currently used
as traffic detectors for signal control at two intersections in Lynnwood, Washington.
At the intersection of SR-99 and 196™ Street SW. the cameras are mounted
approximately 8.5 meters above the ground and aligned approximately 30 degrees
below horizontal. The VIPs were configured for general-purpose detection rather than
cycle failure detection. Based on the researchers’ visual count, the maximum queue
length visible in the VIPs’ field of view was 18 vehicles under this configuration.
Since the maximal number of queued vehicles visible in a camera’s field of view is
determined by the camera’s lens, height, and posture, a VIP may be reconfigured to
accommodate longer vehicle queues when there is a need to do so. At the intersection
of 164th Street SW and 36th Ave W, the cameras’ installation height and pointing
angle are slightly different. The sample images captured from cameras at these two

intersections are shown in Figure 5-11.

For the intersection of SR-99 and 196™ Street SW, the test video data sets were
recorded during the afternoon peak period on June 23, 2004 (Wednesday). The
eastbound approach and the southbound approach at this intersection were selected for
the test. Each approach has three lanes including one left-turn lane. Approximately 50

minutes of video data for each approach were tested. Since SR-99 is one of the most
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important and busiest highways in the Greater Seattle area and 196" Street SW is also

a busy local arterial, the selected intersection is oversaturated during peak hours,
especially for the left-turn movements. It was obvious that cycle failure occurred
frequently at left-turn lanes during the test period. For the intersection of 164™ Street
SW and 36™ Ave W, test video data sets were recorded during morning peak hours on
April 2, 2005 (Wednesday). The eastbound approach and the westbound approach
were selected for this test. The eastbound approach has two through lanes, one left-
turn lane, and one right-turn lane (the traffic on the right-turn lane is not closely
related to this research and was not studied). The westbound approach has two through
lanes and one left-turn lane. Approximately 50 minutes of video data for each

approach were tested in this study.
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SR-99 and 196™ Street, Southbound

Figure 5-11 Sample Images Captured at Test Intersections

164t Street and 361 Ave, Westbound

A total of approximately 200 minutes of video data were tested and the test

are summarized in Table 5-2.

Table 5-2 Test Results

results are encouraging. Of the 106 signal control cycles tested, 318 lane-based test

results were recorded. All the test results were manually checked. These test results

Number Cycle |Number of| Cycle False
Test Location of Test failure Correct failure |Dismissals
Cycles | Occurred |Detections| Detected | / Alarms
SR-99 and Lane 1
196" ST, | (through) | °! ! 21 ! 070
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Eastbound Lane 2
(hrovely | 2! 0 20 1 0/1
Lane 3
ety | 2 7 20 8 0/1
Lane 1 20 0 20 0 0/0
SR-99 and |-(hrough)
196" ST, tll;fnei 20 0 20 0 0/0
Southbound (L °“g3)
anc
(ot tam) | 20 12 20 12 0/0
Lane 1
33 0 33 0 0/0
164" ST ang |-rough)
36 Ave, (tiime 2h) 33 0 32 1 0/1
Eastbound T oug3
ane
ety | 33 0 33 0 0/0
Lane 1 32 1 32 1 0/0
164" ST and |-trough)
36" Ave, t{;‘;‘nezh 32 0 32 0 0/0
Westbound (L oug3 )
ane A
et | 2 0 32 0 0/0
Summation 318 21 315 24 0/3

For the intersection of SR-99 and 196™ Street SW, there were 12 cycle failures
occurred on the southbound approach during the test period. All of these cycle failures
were on the left-turn lane. The left-turn signal had a 24.5-second protected green
interval and a 3.5-second yellow interval. Through-lane traffic had a combined time of
approximately 60 seconds for green and yellow intervals. The cycle failure detection
system worked favorably for the southbound approach: it captured all 12 cycle failures
and made no false dismissal (a false dismissal means a “yes” event is overlooked) or

false alarm (a falsc alarm refers to the mistake of recording a “no” event as “yes”)
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mistakes. The eastbound approach experienced eight cycle failures during the same

period: seven on the left-turn lane and one on the through lane. The left-turn
movement at this approach was protected by a 16.5-second green interval and a 3.5-
second yellow interval. The combined green and yellow time for through-lane traffic
was approximately 40 seconds. All eight cycle failures at this approach were
successfully detected, including the only one on a through lane. However, the system

generated two false alarms, one on the left lane and the other on a through lane.

For the intersection of 164™ Street SW and 36™ Ave W, the traffic volume was
lower and fewer cycle failures occurred. At the eastbound approach, the green interval
was 90 seconds and the yellow interval was 3.5 seconds. No cycle failure occurred on
this approach during the test period. However, the system generated a false alarm on a
through lane. At the westbound approach, the green and yellow interval lengths are
exactly the same to the eastbound approach. One cycle failure occurred on the through
lane during the test period. The system successfully detected this cycle failure and did

not generate any false alarms or false dismissals for this approach.

The three false alarms were further examined. Two false alarms were caused
by the failure of the conflict detection loop. Since the conflict detection loop did not
capture the long vehicle that triggered the motion loops, the red signal light was
considered to be green and consequently resulted in a false alarm. Such a mistake can

be eliminated when the system is operated online and signal control data are obtained
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from controllers rather than through estimation. The other false alarm occurred when

the volume was very close to the critical volume for a cycle failure. Actually the last
vehicle in the queue had just passed the intersection when the signal turned red, but
the system mistakenly captured the vehicle behind it as the last vehicle in the queue. If
there had been one more vehicle in the queue, this could have been a correct detection.
The chances of such false alarms occurring can be lowered by using higher frame rates
and real-time signal control information in that vehicle-queue status can be evaluated

in a more accurate and timely manner.

In summary, all 21 cycle failures from the 318 test cycles were successfully
captured by the system. No false dismissals occurred. but there were three false
alarms, which is approximately 0.9% of the total cycles tested. The overall detection
accuracy was 99.1%. However, all test data were collected in daytime under sunny
conditions. Like most video detection algorithms, the performance of this algorithm is
expected to degrade when applied to bad weather or lighting conditions, such as rain,
fog, snow, nighttime, etc. Further research will be conducted to address the impacts

from these unfavorable conditions.

Conclusions

In this study, an algorithm was proposed to detect cycle failures at signalized
intersections using video data from traffic surveillance cameras. The algorithm

includes three steps: (1) determining dynamic threshold for segmenting foreground
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objects from background images; (2) locating the end-of-queue with the motion

image; and (3) determining whether a cycle failure occurred in each lane in each cycle.
This algorithm was implemented in the cycle failure detection module of the
intersection performance measurement system using Microsoft Visual C#. This

module was tested with four sets of video data captured at two intersections.

The test results showed that the proposed algorithm for cycle failure detection
is encouraging. During the nearly 200 minutes of test periods, the cycle failure
detection system captured all 21 cycle failures, and detection accuracy was
approximately 99.1%; the system generated only three false alarms, which is
approximately 0.9% of the total cycles tested. This accuracy will probably be
sufficient for most practical applications. Two of the three false alarms came from
mistakes made by the system in estimating the status of signal lights. If the program
can take signal status data directly from the signal controller, the accuracy level can be
further improved. The algorithm, which extracts stopped vehicles from the video
stream, tracks the end-of-queue, and determines if a cycle failure is occurring, has
proven to be effective for the test locations over the test periods. The cycle failure
detection system has the potential to provide reliable real-time cycle failure

information to many traffic management and operation applications.
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Chapter 6 Application Example for Practice: Evaluating

Transit Signal Priority

Introduction

TSP is an operational strategy that facilitates the movement of in-service
transit vehicles through signalized intersections. Since delays incurred by transit
vehicles at signalized intersections typically account for 10 to 20 percent of transit
vehicle running times, TSP promotes transit use by improving service reliability
(Baker er al, 2004). A transit agency has two objectives for using TSP: improve
service and decrease costs (Garrow and Machemehl, 1997). Through customer service
enhancements, the transit agency could ultimately attract more customers. Fewer stops
also mean reductions in driver’s workload, travel time, fuel consumption, vehicle
emissions, and maintenance costs. Local transportation agencies also can benefit from
TSP strategies when improved transit service encourages more auto users to switch to
public transportation. Reduced demand for personal car travel will help improve

roadway level of service.

Due to the rapid population and economic growth in the greater Seattle area,
traffic congestion has become an increasingly important issue. Improving transit
service to reduce personal car travel demand is considered an cffective
countermeasure against traffic congestion. The South Snohomish Regional Transit

Signal Priority (SS-RTSP) system was launched to improve the level of service for
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Community Transit buses and, therefore, help solve traffic congestion problems in the

greater Seattle area.

In North America, one of the main concerns about TSP is that overall traffic
performance may be unduly compromised when signal timing plans intended to
optimize traffic flow are overridden to provide a travel advantage to transit vehicles
(Chang and Ziliaskopoulos, 2003). Several recent studies, i.¢. (Abdulhai e al, 2002)
and (Dion ef al, 2002), have quantitatively evaluated the effect of TSP. While these
studies generally agree on the benefits for transit operations, the overall impacts of
TSP on local traffic networks remain unclear. Also, since the performance of a signal
control strategy is closely related to traffic conditions, surrounding land use, traffic
regulations, and roadway network geometry, comprehensive impacts of TSP systems
on transit and other vehicles are case specific and difficult to generalize. This implies
that TSP’s effects on a particular network need to be evaluated based on field data.
Therefore, a comprehensive evaluation of the SS-RTSP system is of both academic

interest and practical significance.

The SS-RTSP system installation and evaluation comprises two phases. Phase-
one involves four intersections on SW 164th Street managed by Snohomish County.

Phase-two covers thirteen intersections on SR-99 managed by the City of Lynnwood.
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Literature Review and Problem statement

Sunkari et al (Sunkari et al, 1995) developed a model to evaluate a bus priority
strategy for one signalized intersection in a coordinated signal system. The model used
the delay equation employed by the Highway Capacity Manual 2000 (HCM, 2000) for
signalized intersections and adapted the equation to calculate person delays for cases
with and without priority strategies. Al-Sahili and Taylor (Al-Sahili and Taylor, 1995)
used the NETSIM microscopic model to analyze Washtenaw Avenue in Ann Arbor,
Michigan. A decrease of 6 percent in bus travel time was the maximum benefit found.
The authors suggested that the most suitable TSP plan for each intersection should be
integrated and implemented as a system to maximize the benefit. Garrow and
Machemehl (1997) evaluated the 4-kilometer-long Guadalupe N. Lamar arterial in
Austin, Texas. The main objective of this study was to evaluate performance of
different TSP strategies under peak and off-peak traffic conditions and at different

saturation levels for side-street approaches (Chada and Newland, 2002).

Field evaluations reported by Chang et al (1995) and Collura et al (2006)
indicated that reductions in average intersection delays ranged from 6 to 42 percent,
and reductions in average bus travel times were from 0 to 38 percent. Some studies,
i.e. (Yand, 2004), found that vehicles sharing the same signal phase with transit
vehicles also occasionally benefited from TSP treatments. The TSP system in Los
Angeles was found to reduce travel times by 19% to 25%, as well as increase ridership

by 4% to 40%, depending on transit lines (Skehan, 2003). While a number of
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deployments produced no significant impacts on general traffic, others yielded stop

and delay increases as high as 23 percent (Baker et al, 2004).

The Transit Capacity and Quality of Service Manual (TCQSM) (Kittelson &
Associates, Inc. et al, 2003) provides guidance to practitioners seeking to evaluate the
impact of a TSP system. The TCQSM recommends using person-delay as the unit of
measurement for comparing the benefits and costs of TSP implementation. The
person-delay approach assumes that the value of time for a bus passenger is the same
as for an auto passenger. This assumption allows use of the same scale to evaluate the
benefits and costs of TSP and provides flexibility to practitioners by allowing variable

auto occupancy and bus occupancy rates.

Project and Test Overview

The SS-RTSP project applies roadside antennas to detect an oncoming transit
vehicle and read information from the transponder on the bus. If the transit vehicle is
qualified to receive TSP, a TSP strategy may be provided to reduce delay to the transit
vehicle (McCain Traffic Supply, 2004). The components of the SS-RTSP system are
very similar to a TSP project in adjacent King County (King County Department of

Transportation, 2002).
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Although several active TSP strategies are available, such as phase insert and

phase suppression (Baker et al, 2004), only two commonly used transit signal priority
strategies are used in the SS-RTSP system: Early Green (Early Start or Red Truncation
of Priority Phase) and Extended Green (or Phase Extension of Priority Phase). The
TSP treatments were only granted to transit vehicles of the test routes that were 0-30

minutes behind their schedule.

The phase-one test of the SS-RTSP project lasted two weeks, from 4/4/05 to
4/17/05, and the phase-two test was from 1/22/07 to 2/4/07. The TSP system was
turned off for one week, and on for the other week. All the data were collected in both
TSP on and off weeks in order to conduct a before and after analysis for the SS-RTSP
project. The corridors are about 6 miles long in total with 17 signalized intersections
where TSP devices are installed. The tested transit routes on the 164th Street corridor
were Community Transit 114, 115, and 116. This corridor has seven bus stops and
three of them are near-side stops. Near-side bus stop is located at the upstream of an
intersection, whereas far-side stop is at downstream of the intersection. On the SR-99
corridor, the tested transit routes were Community Transit 100 and 101. There are 33

bus stops on this corridor and none of them are near-side bus stops.

To provide a comprehensive evaluation of TSP strategies, several Measures of
Effectiveness (MOE) were used to assess impacts on traffic and transit operations. The

main MOEs chosen for this evaluation are as follows:
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Transit Time Match

Transit Time Match (TTM) is defined as the difference between actual transit
arrival time and scheduled arrival time at each timing point on the test routes. The
actual arrival times were extracted from Global Positioning Systems (GPS) installed

on transit vehicles.

Transit Travel Time

Transit travel time data are collected to evaluate whether the TSP system has
caused a significant change in travel time on the test routes. In-vehicle GPS devices

recorded vehicle locations periodically for transit travel time comparisons.

Traffic Queue Length

A major concern about TSP systems is whether they cause excessive delay for
other intersection movements. In this study, sample traffic queue length data was

manually collected from recorded video images at TSP-enabled project intersections.

Signal Cycle Failures

Signal cycle failure refer to the specific delay condition in which vehicles must
sit through at least one complete signal cycle to pass through an intersection. Signal

cycle failure were manually collected from recorded video data.



94

Frequency of TSP Calls

This MOE monitors how frequently the TSP system requests signal priority
~and how often those calls result in a denied priority request. This information was
used along with the intersection delay information to determine the need for any
changes to the TSP policy. The frequency of TSP calls was calculated from the TSP

requests logged by the TSP device of Transit Priority Request Generator.

Average Person Delay

This MOE is commonly adopted to reflect the performance of a roadway

system. A microscopic traffic simulation model was used to derive this MOE.

Vehicle Delays and Stops

The average delay per vehicle is the MOE used for intersection level of service
evaluation in HCM 2000. A microscopic traffic simulation model was used to derive

this MOE.

VISSIM (version 4.10) traftic simulation software was used to model traffic
operations with or without the functions of the TSP system. VISSIM is a microscopic,

behavior-based, traffic simulation tool that can model integrated roadway networks



95
and various modes including general-purpose traffic, buses, high-occupancy vehicles

(HOV), light rail, trucks, bicyclists, and pedestrians. VISSIM can also implement
advanced traffic systems and control strategies such as TSP, provide effective
measures to assess their benefits and costs, and then further optimize system

operations (PTV, 2004).

The section of 164th Street SW between 36th Avenue W and 25th Avenue W
and the SR-99 corridor between 238th Street SW and 164th Street SW in Snohomish
County, Washington were modeled to simulate the corresponding test sites. The
simulation model was configured using the actual layout of the corridor and traffic
control parameters. Observed traffic volumes, transit ridership estimates, and vehicle

occupancy data were used to calibrate the model.

The emulated NEMA controller provided by VISSIM can function as a
standard NEMA controller. The feature was utilized on the 164th Street corridor to
satisfy the requirements of actuated signal control and basic TSP operations. However,
the traffic controllers on the SR-99 corridor are Naztec, which provide some different
TSP functions compared to those of the NEMA controllers. Therefore, an external
controller was established for each intersection using the wvehicle actuated
programming (VAP) function. The control logic and transit priority strategies of the
phase-two test intersections could be implemented by using the VAP programming

language.
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Arterial geometric characteristics and transit stop coordinates were obtained
from construction designs and the GPS systems used by Snohomish County, in
addition to actual observations (Community Transit and David Evans and Associates,
Inc., 2003). Traftic volumes for the approaches were set based on actual volumes
observed by traffic sensors. Some traffic volume data were checked by ground-truth
video recorded at the test intersections to enhance the reliability of the model
calibration process. The passenger ridership on buses was estimated from the annual
ridership of Community Transit (National Transit Database, 2004). For this model, 12
passengers per vehicle (ppv) was selected as the ridership. The average vehicle
occupancy for general-purpose vehicles was estimated to be 1.2 occupants per vehicle,
as determined by King County Metro based on field observations (King County
Department of Transportation, 2002). Additionally, the generation rate of passengers
was set as 10 persons per hour (pph) based on the number of boardings at each stop
(Community Transit, 2005). Other parameters, such as bus headways, locations of bus

stops and so on, were calibrated according to the real values.

The traffic control settings of the simulation model were calibrated by using
actual traffic operations parameters and control plans. Internal parameters for the
simulation model were properly adjusted to ensure the model’s appropriateness to the
corresponding application. After the simulation model was properly calibrated,

simulation tests were conducted.
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Due to the stochastic features of the simulation model, multiple simulation
iterations are essential to enhance the reliability of simulation results. By changing the
VISSIM simulation random seeds, the random vehicle generation feature can be used.
In this analysis, 20 iterations were conducted, ten scenarios with TSP functions and

ten without TSP functions. The test period was 3 hours for each scenario.

Results and Discussion

Transit Time Match

The average transit time match results at bus stops are shown in Table 6-1. The
transit time match results show that when TSP was on, transit vehicles were more

reliable.

For the phase-one test, the increase of on-time performance varied from 18
seconds to 3 minutes and 24 seconds, or 3.9 percent to 27.4 percent, compared to the
scenario when TSP was off. The overall, average improved time match at all the stops
was 1.56 minute, or about 16.3 percent. For the phase-two test, the increase in on-time
performance varied from location to location, with the maximum of 5 minutes and 51
seconds at stop 1013, which is located near the 220th Street intersection. The average
mmprovement of transit time match for all the bus stops was 15 seconds, or about 6

percent, compared with scenario when TSP was off.



Table 6-1 Transit Time Matches at Bus Stops
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TSP off TSP on TSP off TSP on
Stop ID Stop 1D

(min:sec) | (min:sec) (min:sec) | (min:sec)

197 10'12" 806" 1101 9'42 918"
Phase-
189 7'36" 7'18" 1573 1224" 9'00
one
196 7'54" 630" 1575 10'12" 912"
1499 9'30" 3'48" 1003 4'09" 4'34"
1500 4'04" 3'06" 1004 4'09" 529"
1501 427" 330" 1005 4'50" 4'42"
1502 547" 402" 1006 3'53" 325"
1503 3'58” 328" 1007 302" 421"
Phase-
1504 3'16" 4'10" 1008 231" 2'30"
two

1506 4'17" 422" 1010 3'06" 504"
1507 4'59" 4'08" 1012 2'41" 2'43"
1508 3'56" 425" 1013 8'33" 2'42"
1509 3'56" 4'58" 1016 6'49" 2'13"
1510 4'43" 4'35" 1517 3'59" 2'05"




99
Transit Travel Time

Table 6-2 shows the transit travel times for the test corridors. For the phase-
one test, the average travel time for eastbound trips granted TSP was 6.8 seconds (or
5.0 percent) shorter when TSP was on compared with the average travel time of
eligible trips with TSP off. For the westbound trips, the average travel time was longer
when the TSP was on, and even longer for the trips with granted priorities. Since two
of the three westbound bus stops are near-side stops, they may be the reason for the
negative impact. Near-side bus stops are known to decrease the transit benefits from
TSP and even introduce extra delays to transit vehicles under certain situations (Zheng
et al, 2007). This research found that these extra delays can be avoided by disabling

TSP treatment of extended green.

For the phase-two test, the average transit travel time of eligible trips with TSP
on was 13 seconds (northbound) and 32 seconds (southbound) shorter than that when
TSP was off. Northbound and Southbound together, the TSP saved an average of 26
seconds of transit travel time per trip, which was about 2.5 percent of the total corridor
travel time. The average transit travel time for the granted trips was longer than that
for all eligible trips with TSP off. Considering that only late trips would be granted
TSP treatment, this result is not beyond my expectation. Another comparison between
late trips with TSP on and off was conducted. The result showed that TSP saved 54
seconds of transit travel time (northbound and southbound together) for late trips,

which was about 4.9 percent of the total corridor travel time.



Table 6-2 Transit Corridor Travel Times
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Eligible Eligible TSP
Trips with | Trips with Granted
TSP off TSP on Trips
Average travel | Westbound 223" 224" 227"
time Eastbound 215" 212" 2'8"
Standard Westbound 029" 0'30" 029"
Phase- deviation Eastbound 033" 033" 0'30"
one ) Westbound 330" 3'53" 3'53"
Maximum
Eastbound 429" 4'47" 325"
o Westbound 135" 127" 1'30"
Minimum
Eastbound 125" 1'19" 122"
Average travel | Northbound 17'36" 1723" 18724"
time Southbound 17'39" 17'07" 17'35"
Standard Northbound 2'08" 312" 312"
Phase- deviation Southbound 2'34" 220" 220"
two ) Northbound 22'47" 25'13" 25'13"
Maximum
Southbound 2423" 24'16" 24'16"
. Northbound 12'13" 9'43" 943"
Minimum
Southbound 1023" 12'26" 1226"
Traffic Queue Length

Table 6-3 shows the average of traffic queue length on cross streets per signal
cycle and other descriptive statistics. Only data from major intersections with heavy
traffic during typical weekdays were analyzed and summarized. As shown in Table 6-

3, when the TSP was on, the queue length decreased in some cases and increased in
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others. Paired t-tests were applied to compare the average queue length at the test

intersections before and after TSP implementation. The t ratios were -1.578 and -1.663
for phase-one and phase-two tests, respectively, with the critical t ratios of 2.920 and
1.962, respectively, at p=0.05 level. Therefore, the change of the average queue length

on cross streets after the SS-RTSP implementation was not significant.

Signal Cycle Failures

Table 6-4 shows the frequency of signal cycle failure per cycle as well as other
descriptive statistics on cross streets at busy intersections on typical weekdays. The
frequency of signal cycle failure slightly increased or decreased, depending on flow
and signal control conditions, after TSP was enabled. Paired t-tests show that t ratios
were 0.044 and 0.450 for phase-one and phase-two tests, respectively, with the critical
t ratios of 2.920 and 1.962, respectively, at p=0.05 level. TSP implementation did not
result in significant changes in the average number of signal cycle failures. This is

consistent with the cross-street queue length analysis.

Frequency of TSP Calls

The number of granted TSP trips differed from day to day and from
intersection to intersection. The average number of granted TSP trips per intersection
per day was 16.96, or about 18.2 percent of all scheduled trips for the phase-one test,

and 14.4, or about 9.9 percent for the phase-two test.



Table 6-3 Traffic Queue Length on Cross Streets
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Queue Standard ) )
Intersection | Cross Street | TSP o Maximum | Median
Length Deviation
Alderwood Mall Off 2.655 2.415 14 2
Northbound
Parkway On 2.643 2.431 12 2
Alderwood Mall Off 1.567 1.316 7 1
Southbound
Parkway On 1.637 1.403 7 1
N Off 3.201 2.581 16 3
36" Ave Eastbound
On 3.271 2.769 16 3
" Off 4412 2.377 12 4
164™ Street Eastbound
On 3.829 2.172 10 4
0 Off 4.877 3.116 14 4
164" Street Westbound
On 4.471 3.229 13 3
" Off 9.582 4.087 20 9
196" Street Eastbound
On 10.343 3.726 20 9
" Off 10.875 5.159 23 11
196" Street Westbound
On 10.737 5.230 23 11
" Off 4.405 3.310 15 4
200™ Street Eastbound
On 5.308 3.595 18 5
0 off 7.394 4.681 22 6
200" Street Westbound
On 7217 4.655 21 6
0 Off 6.776 3.321 15 6
2207 Street Eastbound
On 6.463 3.608 16 6
" Off 7.764 4.756 18 8
2207 Street Westbound
On 8.484 4.710 20 8




Table 6-4 Signal Cycle Failures on Cross Streets
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) ' Standard )
Intersection Cross Street | TSP Cycle Failure o Maximum
Dewiation

Alderwood Mall Off 0.01121 0.12492 2
Northbound

Parkway On 0.00909 0.19069 4

Alderwood Mall Off 0.00229 0.04789 1
Southbound

Parkway On 0.00000 0.00000 0

" Off 0.00000 0.00000 0
36™ Ave Eastbound

On 0.00413 0.11134 3

" Off 0.02941 0.27056 3
164" Street Eastbound

On 0.02857 0.26668 3

0 Off 0.00769 0.08771 1
164" Street Westbound

On 0.06429 0.36404 3

i Off 0.35802 0.47991 14
196" Street Eastbound

On 0.38784 0.48777 10

" Off 0.36129 0.48089 15
196™ Street Westbound

On 0.43249 0.49594 13

" Off 0.01220 0.10992 1
200" Street Eastbound

On 0.03030 0.17194 1

" Off 0.05625 0.23076 6
200" Street Westbound

On 0.11491 0.31941 5

J Off 0.10029 0.30084 6
220" Street Eastbound

On 0.15021 0.35764 1

0 Off 0.10417 0.30654 3
2207 Street Westbound

On 0.39959 0.49032 5
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Average Person Delay

As shown in Table 6-5, the average person delay was reduced by the SS-RTSP
system. Over all the intersections, the TSP system saved an average of 0.05 second for
all passengers in the phase-one test and 0.02 second in the phase-two test. Although
the 0.05 or 0.02-second time saving seems negligible to each person, the overall
benefit of more than 10.2 person-hours over a three-hour period (peak hours) on all of
the test corridors is significant. This indicates a total peak-hour time saving of 20.4
person-hours (assuming six peak hours per day) per day or 5,100 person-hours per
year (assuming 250 working days per year). The overall person delay saved by the SS-
RTSP system is remarkable. Considering that the number of granted TSP trips was not
high and the negative impact on cross street not significant, more transit routes and
vehicles could become eligible for the TSP system and more person delay could be

avoided.

Vehicle Delays and Stops

Table 6-6 presents the average vehicle delays and the number of stops
observed from the simulation scenarios. TSP impacts on average vehicle delays were
controversial: in some scenarios, the impacts increased, while in others, the impacts
decreased. Observations on the number of vehicle stops in the ten simulation scenarios
were similar. Paired t-tests concluded that the TSP implementation did not generate
significant changes in average vehicle delay and number of vehicle stops for local

traffic.



Table 6-5 Simulation Results of Personal Delays
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Average Personal Delay Person Number
Simulation TSP on TSP off TSP on TSP off
1 8.5 8.5 7177 7166
2 8.7 8.7 7275 7285
3 8.6 8.6 7238 7242
4 8.7 8.7 7290 7288
5 8.6 8.7 7113 7119
Phase-one 6 8.6 8.7 7315 7315
7 8.8 8.9 7337 7321
8 8.5 8.6 7261 7264
9 8.6 8.7 7135 7146
10 8.6 8.6 7187 7189
Average 8.62 8.67 7233 7234
Paired t-test Not significant
1 24.0 24.0 134245 134204
2 24.0 242 134947 134952
3 23.8 24.0 134377 134378
4 23.7 23.6 133622 133627
5 24.5 242 133942 133891
Phase-two 6 243 243 135750 135769
7 239 24.1 134499 134519
8 23.9 24.0 135140 135167
9 23.8 23.7 134016 134004
10 23.7 23.7 134909 134914
Average 23.96 23.98 134545 134543

Paired t-test

Not significant




Table 6-6 Simulation Results of Traffic Delays and Stops
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AVD' (sec/veh) ANS? VN’
Simulation| TSP-on | TSP-off | TSP-on | TSP-off | TSP-on | TSP-off
1 8.4 8.4 0.33 0.33 5937 5938
2 8.2 8.2 0.32 0.32 5826 5825
3 8.3 8.3 0.33 0.33 5905 5907
4 8.5 8.5 0.33 0.34 5925 5924
5 8.3 8.4 0.33 0.33 5818 5818
Phase-one 6 8.5 8.4 0.33 0.33 5974 5973
7 8.7 8.6 0.34 0.34 5951 5951
8 8.2 8.2 0.32 0.32 5869 5869
9 8.4 8.4 0.33 0.33 5809 5809
10 8.3 8.2 0.33 0.33 5880 5881
Average 8.4 8.4 0.33 0.33 5889 5890
Paired t- Not significant Not significant
1 242 24.1 0.77 0.77 | 131165 | 131134
2 242 243 0.78 0.78 131877 | 131882
3 24.0 24.1 0.77 0.78 | 131307 | 131308
4 23.9 23.7 0.77 0.76 | 130552 | 130557
5 24.6 24.4 0.82 0.79 | 130872 | 130831
Phase-two 6 24.5 24.5 0.81 0.80 | 132680 | 132699
7 24.1 242 0.78 0.79 | 131429 | 131459
8 24.1 24.1 0.77 0.78 | 132060 | 132087
9 24.0 23.8 0.76 0.75 130936 | 130934
10 23.9 23.8 0.78 0.77 | 131839 | 131844
Average | 24.2 24.1 0.78 0.78 | 131472 | 131474
Paired t- Not significant Not significant

denotes Average Vehicle Delay. * denotes Average Number of Stops; ° denotes

Vehicle Count
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Conclusions

In this study, the SS-RTSP system was evaluated with field data. Simulation
models were also use to compute MOEs that could not be obtained from field data.
With the simulation models and field data, the impacts of the SS-RTSP system on

both transit and local traffic operations were quantitatively evaluated.

The evaluation results showed that the SS-RTSP system introduced remarkable
benefits to transit vehicles with insignificant negative impacts to local traffic on cross
streets. With the SS-RTSP system transit vehicles can be operated more reliably. The
MOE of Transit Time Match indicated improvements of 1.56 minutes, or about 16.3
percent, in the phase-one test and 15 seconds, or about 6 percent, in the phase-two test.
In the phase-one test, the average eastbound corridor travel time of transit vehicles
was 6.8 seconds, or 5.0 percent shorter for than the average corridor travel time
without TSP. In the phase-two test, the average saved transit corridor travel time was
26 seconds, or 2.5 percent. Because of the saved transit travel time, the SS-RTSP
system decreased the overall person delays. For all passengers who used the TSP-
enabled intersections, the average person delay was reduced by 0.05 second in the
phase-one test and 0.02 second in the phase-two test. Taking phase-one and phasc-two
together, the overall saved person delay was 5100 person-hours per year for peak-

period travel.
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The simulation runs indicated that the SS-RTSP system sometimes increased
and sometimes decreased local traffic delay at an intersection. Paired t-tests on
average vehicle delay and the number of vehicle stops did not find any significant
impacts from the SS-RTSP system at the p=0.05 level. Similarly, the SS-RTSP system
impact on cross-street traffic was also analyzed. The test data showed slight changes
in vehicle delay, queue length, and signal cycle failure frequency on cross streets after
TSP implementation. However, t tests indicated that these changes were not

significant at the p=0.05 level.

To improve the performance of the current SS-RTSP system, more transit
vehicles can be provided with TSP eligibility. The average number of granted TSP
trips per day per intersection was only 16.96 in the phase-one test and 14.40 in the
phase-two test. Considering that the negative impact of the SS-RTSP on local traffic
was not significant, more transit trips could be granted TSP priority and the frequency
of TSP requests could be increased to generate more benefits from the SS-RTSP

system.

This research found that extra transit delays may be introduced by ISP,
compared with non-TSP, at an intersection with a near-side bus stop under certain

conditions. Avoiding these extra delays by moving near-side bus stops to the far side
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of the intersection, or disabling TSP treatment of extended green at intersections with

near-side bus stops, is recommended.
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Chapter 7 Summary and Future Research

Summary of Research

In this research, we developed a comprehensive strategy that quantitatively
measures intersection performance in real-time with traffic counting data collected
with traditional traffic sensors. The strategy contains several algorithms for measuring
important traffic parameters including average control delays, queue length, and signal

cycle failures.

Based on the vehicle count data collected at the entrance and exit of the
detection zone, the control delay estimation algorithm estimates the queue lengths
inside the zone at right-turn, through, and left-turn lanes. With the estimated queue
length, this algorithm calculates the corresponding control delays. Signal cycle failures
can be calculated with the estimated queue length. A real-time system, which is called
InterPer, was developed to demonstrate the algorithms and was tested with field data.
A simulation model was also built up and applied to test the algorithm under ideal

situations.

A system for intersection performance measurement using video image

processing was also proposed for locations with no other traffic sensors except for one
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video camera for each approach. An innovative video image processing algorithm for

detecting cycle failure by tracking the end-of-queue in traffic was also developed in
this study. Background subtraction was used for this task. To make the background
extraction process more robust, a mode-based background extraction algorithm was

developed and proven to be effective using field collected videos.

Since this research is closely related to the project of evaluating SS-RTSP
system, the author also introduced part of his work on this project. To evaluate the
impact of the SS-RTSP system on local traffic, intersection performances were
quantitfied and compared with TSP on and off. This SS-RTSP system evaluation
serves as an example of potential applications of the intersection performance

measurement system described in this study.

Conclusion

The InterPer system was tested with field data. The test results showed that the
estimated queue lengths and control delays were slightly lower than the ground truth
data. These errors were largely due to count errors with the VIPs. In average, the

estimation error for control delay was about 3 second/vehicle. In practice, estimation

error of control delay in a couple of seconds range is certainly acceptable. Its impact
on determination of the intersection’s LOS would be marginal. To further evaluate the

performance of the proposed control delay estimation algorithm, simulation
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experiments were conducted. The simulation tests showed that the algorithm is

reliable and robust in measuring intersection performances under ideal situations. The
queue length measured in simulation model was very close to the ground truth value.
The average of simulated control delay was 4.6 seconds per vehicle, with the average
of ground truth data of 4.3 second per vehicle. The control delay estimation algorithm

is proven to be reasonably accurate when detector errors are eliminated.

The author also developed and tested a video image processing system that
detects signal cycle failures. The system was evaluated using field collected video
slips. The test results showed that the proposed video image processing algorithm for
cycle failure detection is encouraging. During the nearly 200 minutes of test periods,
the cycle failure detection system captured all 21 cycle failures, and detection
accuracy was approximately 99.1%; the system generated only three false alarms,

which was approximately 0.9% of the total cycles tested.

Future Works

The current algorithm assumed that the layout of the intersection and traffic
sensors is ideal, which limits its application at many locations. In the future, the
algorithm will be improved to enhance its ability to measure intersection performance
at locations with non-ideal layout, such as at intersections with shared through-right or

shared through-left lanes.
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The ideal video image processing system needs to be completed. In this
research, only two modules were developed: extracting background image and
detecting cycle failure. Other modules, such as the feature-based vehicle detection and
tracking, measuring queue length, and calculating control delay modules need be
developed to complete the proposed system for intersection performance

measurements.
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Seattle, Washington State.

RESEARCH EXPERIENCE

1.

Evaluation of the South Snohomish Regional Transit Signal Priority (SS-RTSP),
January 2003 ~ December 2006 (expected)

Test and analysis the impact of transit signal priority to transit and local traffic.
Research is support by the Washington State Department of Transportation
(WSDOT) with funding of about $300,000. (Supervisor: Yinhai Wang)

Navigation with Inertial Navigation Systems, October 2001 ~ December 2002

Test of the Applanix POS LS inertial positioning system for the collection of
terrestrial coordinates under a heavy forest canopy. This research is supported by
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the Precision Forestry Cooperative, University of Washington. (Supervisor: Yinhai
Wang and Kamal M. Ahmed)

TEACHING EXPERIENCE

Transportation Data Management and Analysis (CEE 412/599), autumn 2005

Responsibility: grade homework, projects and exams, assist students through lab
practices, give brief lectures about students’ performance.

INDUSTRIAL EXPERIENCE

1.

Transportation Engineer, State Highway Administration, Maryland Department of
Transportation, 2007~current

Responsibility: review traffic impact study; provide solutions to traffic operation
and safety concerns.

2. Intern, Seattle Department of Transportation, 2007
Responsibility: monitor traffic operation; troubleshoot traffic signal control
system; analyze and optimize traffic signal system operation and reliability;
present and analyze traftic data.

3. Civil Engineer, Beijing 1st Construction Engineering Co., Beijing, China,
1997~2001
Responsibility: monitor and control schedule, quality and budget of construction
projects; provide technical support and detailed design for construction projects

REVIEWER
Reviewer of IEEE International Conference on Intelligent Transportation Systems
(ITSC), 2005~2006
Reviewer of Transportation Research Board (TRB), 2005~2007

SERVICE

Coordinator of the STAR Lab, University of Washington, 2006
Volunteer at the Engineering Open House, University of Washington, 2002 ~ 2007



132
PROFESSIONAL AFFILIATION

Transportation Research Board (TRB), 2004 ~ present
Institute of Transportation Engineers (ITE), 2001 ~ present
American Society of Civil Engineers (ASCE), 2001 ~ present

PROFESSIONAL TRAINING

Training at the Future Trends in Energy, Technology and Transportation
Workshops, Cascadia Discovery Institute, 2006

Training on traffic signal control in the City of Lynnwood, 2005
Training on ACTRA and i2TMS by Siemens, 2005 and 2006



